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Redefining and interpreting genomic 
relationships of metafounders
Andres Legarra1*   , Matias Bermann2, Quanshun Mei3 and Ole F. Christensen4 

Abstract 

Metafounders are a useful concept to characterize relationships within and across populations, and to help genetic 
evaluations because they help modelling the means and variances of unknown base population animals. Current 
definitions of metafounder relationships are sensitive to the choice of reference alleles and have not been compared 
to their counterparts in population genetics—namely, heterozygosities, FST coefficients, and genetic distances. 
We redefine the relationships across populations with an arbitrary base of a maximum heterozygosity population 
in Hardy–Weinberg equilibrium. Then, the relationship between or within populations is a cross-product of the form 
Ŵ(b,b′) =

(

2
n

)

(2pb − 1)(2pb′ − 1)′ with p being vectors of allele frequencies at n markers in populations b and b′ . 
This is simply the genomic relationship of two pseudo-individuals whose genotypes are equal to twice the allele 
frequencies. We also show that this coding is invariant to the choice of reference alleles. In addition, standard popula-
tion genetics metrics (inbreeding coefficients of various forms; FST differentiation coefficients; segregation variance; 
and Nei’s genetic distance) can be obtained from elements of matrix Ŵ.

Background
Because selection proceeds within breeds, animal breed-
ers have not often dealt with relationship across popu-
lations, contrary to evolutionary geneticists, e.g. [1]. 
Thus, pedigree-based modelling of relationships across 
animals for genetic evaluation assumed that base popu-
lations (Unknown Parent Groups or Genetic Groups) 
were unrelated and of infinite size. However, popula-
tions differ in heterozygosity and are more or less close 
to each other [2]. In theory, this can be modelled using 
phylogenetic trees, which can be converted into covari-
ances of gene content at loci [3]. However, these trees are 

notoriously difficult to estimate in practice. VanRaden [4] 
proposed methods to model relationships across popula-
tions, both within and across breeds, in particular to cor-
rectly estimate inbreeding when pedigree information 
is missing, but his ideas were not broadly applied. With 
the introduction of genomic evaluation and selection, it 
was noticed that the assumption of unrelated populations 
was untenable, and differences across pedigree bases of 
the different breeds (or groups within breeds) had to be 
explicitly modelled when pedigree and genomic data 
were combined. Defining a relationship implies defin-
ing a genetic base, which is difficult in practice due to 
the lack of a clear “starting point”. This motivated the 
theory of “metafounders” (abbreviated MF in the follow-
ing) [5–7]. The theory is actually composed of two parts, 
which are somewhat mixed up in the literature. The first 
part consists in defining pseudo-individuals (MF) which 
represent populations. The relationships across these MF, 
encapsulated in a matrix Ŵ , model covariances between 
the means of these populations [6], populations’ homozy-
gosities, and their similarity. These relationships Ŵ can be 
extended via the tabular method [7], in a manner that is 
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a generalization of the regular theory for pedigree rela-
tionships, to model covariances across individuals within 
and across breeds [6, 7], including segregation variances 
e.g. in F2 animals. The modelling of the covariance across 
breeds using Ŵ implies that the allele substitution effects 
are defined across breeds [6, 8]. The second part of the 
theory is the definition of a genetic base from which to 
define the population means and their covariances. It 
turns out that a convenient reference is an “absolute” ref-
erence point, which is an ideal population with allele fre-
quencies of 0.5 at biallelic markers and therefore with the 
maximum possible heterozygosity in Hardy–Weinberg 
equilibrium (HWE) [9]. This is also convenient for com-
patibility with genomic relationships based on the same 
0.5 reference point [6]. The use of 0.5 as a reference leads 
to a mathematical definition of Ŵ as (co)variances of allele 
frequencies across and within populations [9]. However, 
this definition is (empirically) sensitive to the choice of 
reference alleles. In addition, the meaning of Ŵ is not yet 
fully understood in terms of commonly used population 
genetics metrics, such as inbreeding coefficients, het-
erozygosity, and genomic relationships across breeds or 
populations [2]. For instance, a potential user of the the-
ory of MF may be at odds on how to actually compute (or 
estimate) Ŵ from known allele frequencies. Moreover, the 
user may want to compare inbreeding coefficients or het-
erozygosities to other population genetics metrics. This is 
increasingly important with the growing use of genomic 
measurements for managing genetic diversity [10].

The aim of this short note is to clarify the following 
two points: (1) give equivalent definitions of Ŵ that are 
invariant to the (maybe non-random) choice of refer-
ence alleles; and (2) explain how to interpret Ŵ in terms 
of inbreeding and heterozygosity. These results are used 
in the companion paper [11] that is dedicated to methods 
for estimation of Ŵ in complex populations.

Theory
Definition of Ŵ invariant to the choice of reference alleles
The definition of Ŵ in [5] can be understood as “the 
relationship across individuals in the base pedigree 
population(s), relative to a conceptual base population 
with all allele frequencies p = 0.5 ”. Note that, here, the 
population for which p = 0.5 is merely conceptual.

Garcia-Baccino et  al. [9] later found out that 
γb,b′ = 8cov(pb, pb′) for populations b and b′ . This comes 
from the fact that the mean and the homozygosity of each 
population refer to a conceptual base population where 
the expectation of allele frequencies is p = 0.5 . In other 
words, some pi will be lower than 0.5 and some will be 
higher, but they average 0.5. This is reasonable to assume, 
conceptually, by randomly labeling an allele as the refer-
ence. However, empirical treatment of observed genomic 

data often delivers p  = 0.5 , even when addressing mul-
tiple populations, as populations are real (observed). For 
this reason, two researchers using different choice of ref-
erence alleles for the same dataset may get different num-
bers from Ŵ if they apply blindly γb,b′ = 8cov(pb, pb′) . The 
same happens if one uses sequences simulated by coales-
cence, which call “1” the mutant and “0” the wild allele.

Consider the matrix M which contains genotypes coded 
{0,1,2}. The values of genomic relationships obtained as 
cross-product G =

1
sZZ

′

=
1
s

(

M − 2p′
)(

M − 2p′
)

′ [12] 
with s a scale factor (typically s = 2

∑

piqi or s = n/2 
for n markers) are invariant to changes in the reference 
alleles used to define M and p . Although rarely explicitly 
stated, this invariance is well known. We show proof in 
the Appendix.

In the same spirit, next we need an alternative defini-
tion of Ŵ which is invariant to the choice of the refer-
ence allele. In [7], Ŵ and metafounders are defined from 
alleles in the base-population being sampled from pools 
of alleles, and counting how many are identical or not. 
Similarly, for a given labelling of alleles, we need to 
define unambiguously Ŵ , without imposing the condition 
p = 0.5 . To arrive to a meaningful definition, we notice 
that γb,b (the self-relationship of MF b ) is simply the aver-
age (genomic) relationship across animals that form the 
corresponding base population b , and the relationship 
γb,b′ of populations b and b′ is the average relationship 
across all possible pairs of individuals, one from b and the 
other one from b′ . This definition was already presented 
in [13–15] and (unaware of these works) was rediscov-
ered and accommodated to genomic relationships [7].

It follows (as described in the  Appendix) that 
the self-relationship of a population b with itself  
is γb,b =

1
s

∑n
k=1

(

2pb(k) − 1
)2

=
1
s (2pb − 1)(2pb − 1)

′

 
with s = n

2
 , n being the number of markers, and 

the relationship across populations b and b′ is 
γb,b′ =

1
s

(

2pb − 1
)

(2pb′ − 1)′ . This is purely a quan-
titative genetics definition, i.e. Ŵ is a feature of the 
population(s).

Equivalently, we can see Ŵ as genomic relationships of 
the base populations means, seen as individuals, which 
requires the "genotypes" of each population. If pb is a 
vector of allele frequencies of the base population b , we 
can see 2pb as the “genotype” of the base population. 
The centered “genotype” of the base population, with 
respect to the fictitious population with all p = 0.5 , is 
simply zb = 2pb − 1 where 1 is twice 0.5, i.e. the refer-
ence allele frequency. Thus, the genomic relationship 
matrix across populations is simply Ŵ =

1
sZZ

′ where Z 
contains twice the allele frequencies of the populations, 
minus 1: zb,k = 2pb,k − 1 . We note that this is strictly 
the same definition as in VanRaden [7], if we consider 
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that allele frequencies are “genotypes” of populations—
this idea is e.g. in Tier [16]. For statistical inference, Ŵ is 
a parameter of a distribution from which “genotypes” 
(twice the allele frequencies minus 1) of base popula-
tions are sampled.

We also want to stress that if E(pb) = E
(

pb′
)

= 0.5 , 
then γb,b′ =

1
s (2pb − 1)(2pb′ − 1)′ = 8Cov

(

pb(i), pb′(i)
)

 
as in [9]. However, the new formulation is more gen-
eral, and correctly considers the cases where pb  = 0.5 , 
for instance across several breeds or when one of the 
“wild” or “mutant” alleles is the reference allele.

Interpretation of Ŵ as heterozygosities or inbreeding 
coefficients of populations
In this section, we try to relate the values in Ŵ to 
diversity and homozygosity of the population. 
Consider average heterozygosity of a population, 
H = 2piqi  . The conceptual population with p = 0.5 has 
Hmax = 0.5 , whereas the observed population b has 
Hb =

(

2pb(i)qb(i)
)

. We can obtain, after some algebra:

From this, it follows that Hb = Hmax

(

1−
γb,b
2

)

 , and γb,b
2

 
can be seen as an inbreeding coefficient. In other words, 
γb,b
2

 measures the relative change in heterozygosity from 
average Hmax = 0.5 to Hb =

1
2
−

γb,b
4

=

(

2pb(i)qb(i)
)

 . 
Indeed, Jacquard [17] called γb,b

2
 the inbreeding coeffi-

cient of a population.
Meuwissen et  al. [10] reviewed different measure-

ments of inbreeding for genomic management. Among 
these, we can find a first inbreeding coefficient based 
on homozygosity:

and when we impose pb(0,i) = qb(0,i) = 0.5 , this expres-
sion yields:

Thus, γb,b
2

 has the same interpretation as above, i.e. in 
terms of change in heterozygosity.

The second inbreeding coefficient in [10] is based on 
drift:

and again, when we impose pb(0,i) = qb(0,i) = 0.5 , this 
yields:

γb,b
2

=
1
2
2
n

∑

i=1,n

(

2pb(i) − 1
)2

=
0.5−(2pb(i)qb(i))

0.5 =

(

Hmax −Hb

)

Hmax
.

Fhom = 1−
Ht

H0

= 1−
1

n

∑ 2pb(t,i)qb(t,i)

2pb(0,i)qb(0,i)
,

Fhom = 1− 2
(

2pb(i)qb(i)
)

=

γb,b

2
.

Fdrift =
1

n

∑

i=1,n

(

pb(i) − pb(0,i)
)2

pb(0,i)qb(0,i)
,

identically to the previous one. However, note that here 
we are imposing pb(0,i) = qb(0,i) = 0.5 , which means 
that, in fact, the value γb,b

2
 is not truly due to genealogical 

drift from a real, existing population (rather, it describes 
change from a merely conceptual one), thus describ-
ing different values of γb,b

2
 as due to drift would be a 

misnomer.
The third inbreeding coefficient is defined as follows. 

If γb,b is a relationship coefficient, then:

can be seen as an inbreeding coefficient—a measure of 
homozygosity of the population b , not of any individ-
ual. Substituting γb,b by γb,b = 2

0.5−(2pb(i)qb(i))
0.5

 (obtained 
before) gives:

If average heterozygosity 
(

2pb(i)qb(i)
)

 is 0, then 
Fb = 1 , meaning that there is complete inbreeding and 
lack of heterozygosity. If average heterozygosity (under 
HWE conditions) is maximal: 

(

2pb(i)qb(i)
)

= 0.5 , then 
inbreeding Fb = −1 , meaning complete heterozygosity 
(under HWE conditions). Again, γb,b − 1 describes a 
feature of the population—the homozygosity compared 
to a population in HWE with maximum heterozygosity.

Interpretation of Ŵ in terms of segregation variance, 
genetic distances and Fst
A commonly used measure of genetic distance across 
populations is Nei’s minimum genetic distance, Db,b′ , 
which is also the numerator of the FST  differentiation 
index, and is simply [1]:

After some algebra, we get (as described in 
the Appendix):

which also corresponds to the segregation variance, i.e. 
the difference in genetic variance from F1 to F2 crosses 
of b and b′ [7]. Thus, we can use γ coefficients to describe 
genetic distances.

The FST  coefficient, applying the Hudson et  al. [18] 
definition as FST =

(Hbetween−Hwithin)

Hbetween
 is shown in 

the Appendix to be:

Fdrift =
1

n

∑

i=1,n

(

2pb(i) − 1
)2

0.25
=

γb,b

2
,

Fb = γb,b − 1,

Fb = 1− 4
(

2pb(i)qb(i)
)

.

Db,b′ =
1

n

∑

(

pb(i) − pb′(i)
)2
.

Db,b′ =
γb

8
+

γb′

8
−

γbb′

4
,
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which again shows that γ relates to already known 
descriptors of differentiation. Note that this formula 
takes into account the covariance of allele frequencies in 
both populations but also the heterozygosity in each pop-
ulation. For instance, assume two breeds fixed for oppo-
site alleles as follows:

and so on. We have Γb,b = Γb′,b′ = 2 and Γb,b′ = −2 . 
These yield FST = 1 as expected.

Other reference base populations
The theory of MF uses 0.5 as the frequency of the refer-
ence allele because it is convenient for many purposes. 
However, one could define relationships from a particular 
“reference” base population—for instance, in single breed 
evaluations, it could be the oldest base population in the 
breed; but it could be a wild ancestor, or an outgroup 
population. Then, equations should include frequencies 
in the outgroup ( po ) as:

For MF that describe missing parents across years 
within breed (typically modelled as unknown parent 
groups), choosing as reference base population the very 
first MF in chronological order may be convenient. This 
would yield a self-relationship of the reference base pop-
ulation of γo,o = 0 and would naturally lead to use the 
genetic variance of the base population as the parameter 
of models using Ŵ [7]. The problems are (a) Ŵ would be no 
longer full rank and (b) po(i) is often unknown.

Discussion
Description of the genetic features of a population in 
itself is a subject that has not been frequently addressed 
by animal breeders, because the assumption of unrelated 
base populations is a simple and efficient one [19], even 
if the theory could be improved [20–22]. However, the 

FST =

γb
8
+

γb′

8
−

γbb′

4

1
2
−

γbb′

4

,

Breed b Breed b′

A a
c C
D d
e E

,

γb,b =
1

2
∑

po(i)q0(i)

∑

(

2pb(i) − 2po(i)
)2
,

γb,b′ =
1

2
∑

po(i)q0(i)

∑

(

2pb(i) − 2po(i)
)(

2pb′(i) − 2po(i)
)

.

advent of genomic selection led to reconsider modelling 
means and variances of these populations, in particular 
because of an acute need for the so-called single step 
genomic best linear unbiased prediction (ssGBLUP) [23, 
24]. At the same time, the concepts of inbreeding, het-
erozygosity, and drift have been thoroughly revisited with 
the advent of genomic evaluation [10, 12, 25].

The concept of MF tries to merge the genetic descrip-
tion of populations and the relationships across them 
[17, 26] with a relationship formulation that can be used 
for pedigree and genomic selection, giving an explicit 
modelling to differences in means, segregation variance, 
or covariances across crossbreds with variable compo-
sition. It does this in a manner that is, by construction, 
compatible (at least in principle) with individual single 
nucleotide polymorphism (SNP)-based measurements of 
relationships.

This short note presents an alternative derivation of MF 
relationships in terms of cross-products of gene content 
(of the populations), which had not been fully described 
so far [6, 7, 9]. This derivation is fully compatible to pre-
vious derivations and allows to derive estimators more 
easily for relationships across MF (see in the companion 
paper [11]). Moreover, we also derive other subproducts 
that frame our theory with population genetics metrics 
such as FST or heterozygosity. These relationships have 
been derived assuming the conceptual base population 
with p = 0.5 . In addition, the now more coherent theory 
could be used e.g. to establish priorities for management 
of diversity across breeds including crosses [27]. Note 
that whereas values of Ŵ itself assume the conceptual 
base population with p = 0.5 , using them for manage-
ment of diversity would lead to increase heterozygosities 
at markers, which may not be desirable [10], whereas on 
the other hand it gives a unified framework which may 
be attractive. To solve the issue, Colleau et  al. [28] sug-
gested “… [converting] the results into more conventional 
scales…” through scale and shift factors, but that does not 
resolve the problem of increasing homozygosities versus 
conserving existing allele frequencies.

On the other side, this theory is somehow compro-
mised because the markers used are not random—they 
have been tailored, for commercial chips, to be polymor-
phic in major commercial breeds. For this reason, the 
relationships obtained in this way, in particular for minor 
breeds, should not be taken at face value.

Overall, we believe that this note contributes towards a 
more general and encompassing theory of diversity and 
relationships, which would be useful both for manage-
ment diversity and for prediction.
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Conclusions
Metafounders are a concept that describes genetic varia-
tion and co-variation within and across finite populations. 
We presented alternative, new definitions of the concept of 
MF in terms of cross-product of allele frequencies of popu-
lations. The new definitions are more general and can be 
related to existing concepts of genetic distances, heterozy-
gosity or inbreeding, and they can be naturally integrated 
into genomic and pedigree-based predictions. We expect 
that these new definitions will help develop conceptual and 
practical tools for population management and selection.

Appendix 
Matrix G is invariant to changes in reference alleles
This can be shown as follows. Consider the genotypes of 
two individuals, row vectors zi and zj , which contain values 
of −1, 0, 1 . The genomic relationship of individuals i, j 
G(i,j) =

1
s

∑

kzi,kzj,k where s a scaling factor (for instance 
s = 2

∑

piqi ; or s = 2
∑

0.52 = n
2
 with n the number of 

markers, e.g. assumed to have a frequency of 0.5) and 
zi,k = mi,k − 2pk where mi,k = {0, 1, 2} copies of the refer-
ence allele and pk an assumed frequency for the reference 
allele at locus k . Change of the reference allele results in 
switching to mnew

i,k = {2, 1, 0} i.e. mnew
i,k = 2−mi,k and 

pnewk = 1− pk . As a result znewi,k = mnew
i,k − 2pnewk = −zi,k 

and the negative sign cancels at the crossproduct: 
znewi,k znewj,k =

(

−zi,k
)(

−zj,k
)

= zi,kzj,k . A similar argument 
holds for the value of s , i.e. even if the reference allele is 
swapped, the values of piqi do not change. In particular, the 
proof does not assume any value for allele frequencies. 
Thus, the value of Gi,j is invariant to the choice of the refer-
ence allele.

Definition of Ŵ invariant to changes in reference alleles
Within populations
To define unambiguously Ŵ as a function of observed 
allele frequencies in each base population, without 
imposing the condition p = 0.5 , we notice that γ(b) is 
simply the average genomic relationship across animals 
in the corresponding base population b . Then, we derive 
the expected value of the average G taking into account 
the allele frequencies in HWE.

First, we consider a single population, b . The cross-
products zizj with scalars zi ( zj ) the genotype at one 
locus for individual i ( j ) coded as {−  1,0,1} are either 1 
(for same homozygotes) or −1 (for opposite homozy-
gotes), and these values occur with frequencies that can 
be obtained from the following Punnet square (here we 

omit the subindex b for clarity) with crossproducts zizj 
with gamete frequencies of individual i (rows) and j 
(columns):

The expected value of zizj for the founders of a popula-
tion is therefore:

Then, we sum all n loci and we divide by the scale s = n
2
 

(which is equivalent to assuming a conceptual base popu-
lation with maximum heterozygosity), which gives:

for pb the row vector with frequencies in population b.
Note that if pb =

1
n

∑

pb(i) = 0.5 , this is equivalent (as 
expected) to γ = 8var(pi) in Garcia-Baccino et  al. [9], 
where random labelling of alleles is assumed, and thus 
pb = 0.5 holds.

Anyway, Eq. (1) is invariant to choosing p = freq(A) or 
to choosing p = freq(a) (in other words, to the choice of 
reference allele “A” or “a”) since all that it counts is the 
absolute deviation of pb(i) from 0.5.

Across populations
Now we compute the average genomic relationship 
across two populations in HWE, b and b′ , with respective 
frequencies pb and pb′ as follows:

This gives that across all founders in both populations:

As before, this is invariant to the reference alleles. For 
instance, assume that the reference allele is switched, so 
that the new allele frequency is p∗ = 1− p . This would give 

p2 2pq q2

p2 1 0 −1

2pq 0 0 0

q2 −1 0 1

.

Efounders

(

zizj

)

= p
2
(

p
2
− q

2
)

− q
2
(

p
2
− q

2
)

=

(

p
2
− q

2
)(

p
2
− q

2
)

= (p− q)2 = (2p− 1)2.

(1)

γb,b =

2

n

∑

i

(

2pb(i) − 1
)2

=

2

n
(2pb − 1)(2pb − 1)′.

p2b′ 2pb′qb′ q2b′
p2b 1 0 −1

2pbqb 0 0 0

q2b −1 0 1

.

Efounders
(

zizj
)

= p2b
(

p2b′ − q2b′
)

− q2b
(

p2b′ − q2b′
)

=

(

p2b − q2b
)(

p2b′ − q2b′
)

= (pb − qb)(pb′ − qb′ ).

= (2pb − 1)
(

2pb′ − 1
)
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(

2p∗b − 1
)(

2p∗b′ − 1
)

= (2(1− pb)− 1)(2(1− pb′)− 1)

= (−2pb + 1)(−2pb′ + 1) = (2pb − 1)(2pb′ − 1).
Now, summing across all loci and using the scaling 

s = n
2
 as before gives:

Again, if E(pb) = E(pb′ ) = 0.5 , then γb,b′ = 8cov
(

pb(i), pb′(i)
)

 as 
in [9]. However, this formulation is much more general, and 
correctly considers the cases where pb  = 0.5 , for instance 
across several breeds or when the “wild” or “mutant” allele 
is the reference allele.

Nei’s genetic distance
Nei’s minimum genetic distance, Db,b′ , which is also the 
numerator of the FST differentiation index, is simply:

This can be obtained in terms of Γ  as follows. First, 
expand the equation above:

Then express each term as a function of Γ  coefficients:

Substituting above we obtain:

which corresponds as well to the segregation variance in 
an F2 from b and b′ [7].

Derivation of the FST
The FST in Hudson et al. [18] as described by Bhatia et al. 
[29] is:

where Hbetween −Hwithin = Db,b′ =
γb
8
+

γb′
8
−

γbb′

4
 as 

above. Then, using the identity for 1n
∑

(

pb(i)pb′(i)
)

 above 
we get:

(2)
γb,b′ =

2

n

∑

(

2pb(i) − 1
)(

2pb′(i) − 1
)

=

2

n
(2pb − 1)(2pb′ − 1)′.

Db,b′ =
1

n

∑

(

pb(i) − pb′(i)
)2
.

Db,b′ =
1

n

∑

(

pb(i)
)2

+

1

n

∑

(

pb′(i)
)2

−

1

n
2
∑

(

pb(i) − pb′(i)
)

.

1

n

∑

(

pb(i)
)2

=

γb

8
+

1

n

∑

(pb(i))−
1

4
,

1

n

∑

(

pb′(i)
)2

=

γb′

8
+

1

n

∑

(pb′(i))−
1

4
,

1

n

∑

(

pb(i)pb′(i)
)

=

γbb′

8
+

1

2

1

n

∑

(pb(i))+
1

2

1

n

∑

(pb′(i))−
1

4
.

Db,b′ =
γb

8
+

γb′

8
−

γbb′

4
,

FST =

Hbetween −Hwithin

Hbetween
,

Combining both terms gives:
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