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Constructing eRNA‑mediated gene 
regulatory networks to explore the genetic basis 
of muscle and fat‑relevant traits in pigs
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Song Zhang1,2* and Yuwen Liu1,2,3,6* 

Abstract 

Background  Enhancer RNAs (eRNAs) play a crucial role in transcriptional regulation. While significant progress 
has been made in understanding epigenetic regulation mediated by eRNAs, research on the construction of eRNA-
mediated gene regulatory networks (eGRN) and the identification of critical network components that influence com-
plex traits is lacking.

Results  Here, employing the pig as a model, we conducted a comprehensive study using H3K27ac histone ChIP-seq 
and RNA-seq data to construct eRNA expression profiles from multiple tissues of two distinct pig breeds, namely Enshi 
Black (ES) and Duroc. In addition to revealing the regulatory landscape of eRNAs at the tissue level, we developed 
an innovative network construction and refinement method by integrating RNA-seq, ChIP-seq, genome-wide associa-
tion study (GWAS) signals and enhancer-modulating effects of single nucleotide polymorphisms (SNPs) measured 
by self-transcribing active regulatory region sequencing (STARR-seq) experiments. Using this approach, we unraveled 
eGRN that significantly influence the growth and development of muscle and fat tissues, and identified several novel 
genes that affect adipocyte differentiation in a cell line model.

Conclusions  Our work not only provides novel insights into the genetic basis of economic pig traits, but also offers 
a generalizable approach to elucidate the eRNA-mediated transcriptional regulation underlying a wide spectrum 
of complex traits for diverse organisms.
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Background
Significant genetic and phenotypic diversity exists among 
breeds of domestic animals, which provide ideal models 
to understand the genetic basis of complex traits. Link-
ing genetic variants to phenotypes using such models 
is critical in improving livestock production capacity 
and in elucidating the genetic basis of traits shared by 
humans and animals. In humans and animals, extensive 
efforts in mapping causal genetic variants that underlie 
traits suggest that more than 90% of the single nucleotide 
polymorphisms (SNPs) that are associated with various 
complex traits or diseases are located in the non-coding 
part of the genome [1–3]. Compared to the biological 
interpretation of coding variants, our lack of understand-
ing of the genetic code of non-coding regulatory variants 
has motivated us to initiate several ambitious projects 
with the aim of systematically characterizing how the 
non-coding genome functions in various organisms. 
These projects include ModENCODE for model organ-
isms [4], ENCODE for humans [5], and FAANG for farm 
animals [6]. These collaborative projects have not only 
generated multidimensional and temporo-spatial regula-
tory landscapes in different species, but have also played 
an important role in identifying the causal non-coding 
DNA variants and their target genes that would other-
wise have been overlooked [7–11].

In spite of the extensive body of research in functional 
genomics conducted in humans and animals, there 
remains untapped potential in the comprehensive explo-
ration of the eRNA landscape and the identification of 
crucial transcriptional regulatory networks mediated by 
eRNAs. These untapped resources hold great promise 
for advancing our understanding of the genetic basis of 
complex traits. Discovered in the 1980s, eRNAs are tran-
scribed from enhancer regions [12], and their expression 
levels have been found to be strongly correlated with 
enhancer activity [13, 14]. In  vivo, eRNA has multiple 
regulatory functions, such as mediating the formation of 
enhancer-promoter loops, maintaining an open chroma-
tin state, changing the chromatin spatial conformation, 
and recruiting RNAP2 and other transcription initia-
tion complex molecules [13, 15–17]. In recent years, the 
important biological functions of eRNAs have just began 
to be unraveled in the regulation of diseases, such as can-
cer, neurodegenerative diseases, cardiovascular diseases, 
and metabolic diseases [18]. Therefore, comprehen-
sively analyzing the role of eRNAs, as a hub in integrat-
ing signaling from upstream transcription factors (TF) 
to regulate downstream target genes, would significantly 
contribute to understanding the genetic basis of complex 
traits.

The identification of eRNAs presents a signifi-
cant challenge due to their inherently short length, 

infrequent splicing, and instability. In spite of these 
difficulties, the progress of sequencing technologies 
has provided several methods, such as global run-on 
sequencing (GRO-seq) [19], precision run-on sequenc-
ing (PRO-seq) [20], native elongating transcript 
sequencing (NET-Seq) [21], cap analysis gene expres-
sion and deep sequencing (CAGE-seq) [22], to iden-
tify eRNAs. Although efficient, the complex and costly 
nature of these methods remains a hindrance to their 
widespread use. An alternative approach is to use RNA-
seq data to identify eRNAs [23–25]. There has been a 
growing trend of using this approach to uncover eRNAs 
in various biological contexts [26–30], including the 
first animal eRNA database with eRNA annotation in 
10 species [31]. However, the eRNA annotation in pigs 
has yet to be established.

Among domesticated animals, the pig (Sus scrofa) 
holds a pivotal role, serving not only as a crucial source 
of protein and fat but also as an exceptional model for 
biomedical research. More importantly, geographi-
cal divergence, local adaptation, and artificial selec-
tion have resulted in significant phenotypic differences 
between eastern (Asia) and western (Europe and Amer-
ica) pigs, including lean meat mass and fat deposition 
[11, 32, 33]. In the pig husbandry industry, the pursuit 
of lean meat mass and controlled fat deposition stands 
as crucial breeding objectives, given their direct impact 
on meat quality and production efficiency. The Enshi 
Black (ES) pig, a representative of eastern pig breeds 
has a stronger fat deposition ability than the western 
breed Duroc pig. By comparison, the later has a higher 
lean meat ratio than the former. These contrasting phe-
notypes offer a unique perspective to study the genetic 
mechanisms that underlie the development and home-
ostasis of muscle and fat tissues.

In this study, our aim was to profile the landscape of 
eRNAs in the muscle and fat tissues of Duroc and ES 
pigs, respectively. We present potential hub eRNAs and 
their target genes by an integrative approach combining 
eRNA-mediated transcriptional regulatory networks, 
genome-wide association study (GWAS) signal and 
STARR-seq experiments. STARR-seq is a sequencing-
based high-throughput method that allows a direct 
measure of the allelic regulatory activity of SNPs [34, 
35]. Our study not only sheds light on the genetic regu-
latory mechanisms underpinning lean meat mass and 
fat deposition in pigs, but also proposes an integrative 
framework to pinpoint eRNA-mediated genetic regula-
tory networks that might substantially influence com-
plex traits in various species.
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Methods
Data source
In this study, we used H3K27ac ChIP-seq data obtained 
from the longissimus dorsi skeletal muscle and subcu-
taneous fat tissues of 2-week-old Duroc and ES pigs to 
identify enhancers, with two biological replicates for 
each breed. In addition, we integrated RNA-seq data 
from these pigs, covering various tissues such as skeletal 
muscle (longissimus dorsi), subcutaneous fat, heart, liver, 
and spleen, for a comprehensive quantitative analysis of 
gene and RNA expression. In addition, we included topo-
logically associated domain (TAD) information for the 
longissimus dorsi skeletal muscle of two-week-old Large 
White pigs. All datasets were sourced from the research 
conducted in Professor Shuhong Zhao’s laboratory under 
the accession number PRJNA597497 [36]. To comple-
ment our investigation, we accessed GWAS hits and 
quantitative trait loci (QTL) regions associated with dif-
ferent traits in pigs from pigQTLdb, available at https://​
www.​anima​lgeno​me.​org/​cgi-​bin/​QTLdb/​SS/​index. Fur-
thermore, we collected GWAS summary statistics for 64 
human complex traits from Hook’s study [37], accessible 
at https://​doi.​org/https://​doi.​org/​10.​5281/​zenodo.​32531​
80. These datasets were selected based on their relevance 
to our research questions and their availability.

Identification of enhancers and super enhancers
To obtain annotation information on genomic enhancers 
in the muscle and adipose tissue of Duroc and ES pigs, 
we acquired H3K27ac signal peaks for identifying the 
location of enhancers. Each tissue consisted of two bio-
logical replicates. In order to ensure consistency in the 
H3K27ac signal peaks within each tissue, we merged the 
peaks from the biological replicates using the ‘intersect’ 
and ‘merge’ commands in BEDTools (version 2.31.0) with 
the default parameters [38]. Subsequently, we excluded 
H3K27ac signal peaks that overlapped with the transcrip-
tion start site (TSS) of known genes within ± 1 kb and 
considered the remaining H3K27ac peaks as enhanc-
ers. To measure the activity of enhancers in tissues, we 
downloaded the raw ChIP-seq data of the H3K27ac his-
tone modification for evaluating enhancer activity. First, 
we processed the ChIP-seq data using the TrimGalore 
software (version 0.6.7, Babraham Institute, Cambridge, 
UK) to eliminate sequencing adapters, low-quality bases 
(Phred < 20), and short sequences (-q 20 --phred33 
--stringency 4 --length 25 -e 0.1). After quality con-
trol, we aligned the clean data to the susScr11 genome 
using the Bowtie2 (version 2.4.4) software with the fol-
lowing parameters: --very-sensitive -X 1500 -x genome 
index -1 fq1 -2 fq2 [39]. PCR duplicates were removed 
using the Sambamba (version 1.0.0) [40] software. From 
each sample, we extracted pairs of aligned concordant 

reads, resulting in bam files for quantifying enhancer 
activity. Referring to Zhao’s approach [36], we used the 
multiBamSummary BED-file function in deepTools [41] 
(v2.088) to count the number of reads within the ± 1 kb 
region around the center of different tissue enhancers. 
We then normalized the enhancer read counts by divid-
ing them by the total number of reads in the library. 
Finally, we assessed the intensity of enhancer activity by 
calculating the fold-change value (IPRPM /INPUTRPM, 
where IPRPM represents the normalized signal strength 
of enhancers in the IP library, and INPUTRPM corre-
sponds to the normalized signal strength of enhancer 
regions in the INPUT library). The dynamic activity heat-
map depicting enhancer activity in fat and muscle tissue 
was created using the ‘Heatmap’ function from the ‘Com-
plexHeatmap’ R package (version 2.6.2) within the R soft-
ware (version 4.0.5).

To identify super-enhancers (SE) in Duroc muscle, 
Duroc fat, ES muscle, and ES fat tissues, the bam files 
from biological replicates of each tissue were combined. 
Next, we used the MACS2 (version 2.2.8) [42] software 
to identify H3K27ac peaks specific to each tissue. Subse-
quently, with the resulting files and the genomic annota-
tion file for the pig, we employed the ROSE (version 0.1) 
[43] software using default parameters to pinpoint the SE 
for each tissue.

Identification of eRNAs
As the transcriptional range of eRNAs can be wider than 
the enhancer region [44], we expanded our enhancer 
set by ± 3 kb around the central point of each enhancer, 
delineating it as the potential transcriptional activ-
ity region of enhancers, in alignment with established 
methodologies from previous research [27, 29]. In order 
to mitigate interference from known coding genes 
or non-coding RNAs (such as miRNA, misc_RNA, 
rRNA, snoRNA, snRNA, tRNA, and lncRNA) during 
eRNA quantification, we followed the eRNA identifica-
tion method outlined in Carullo et  al. [30]. In the sub-
sequent transcription signal quantification analysis, 
our exclusive focus was on the potential transcription 
regions of enhancers falling more than 1  kb outside of 
the genes and non-coding RNAs curated by RefSeq, 
UCSC, and Ensembl databases. Subsequently, we used 
strand-specific RNA-seq data from two biological repli-
cates of muscle and adipose tissue in ES and Duroc pigs 
for eRNA analysis. The individuals contributing to the 
RNA-seq data were the same as those from which the 
H3K27ac ChIP-seq data were derived. Initially, qual-
ity control for the RNA-seq data was conducted using 
the TrimGalore software (version 0.6.7). The clean data 
were then mapped to the reference genome (susScr11) 
using the Hisat2 (version 2.2.1) software [45], using the 

https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
https://doi.org/
https://doi.org/10.5281/zenodo.3253180
https://doi.org/10.5281/zenodo.3253180
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(--rna-strandness RF) option for strand-specific map-
ping. Following the mapping step, we employed the 
Seqmonk software (Babraham Institute) in accordance 
with a previously described methodology [30] to assess 
the expression levels of eRNAs. In our study, we defined 
a mean RPM value of ≥ 1 in biological replicates spe-
cific to each tissue as the threshold for detectable eRNA 
expression in that tissue. In addition, we considered the 
directionality of eRNA transcription. If the proportion 
of reads mapped to the positive strand of the genome 
fell between 5 and 95% of the total reads mapped to the 
enhancer region, the eRNA was classified as bidirection-
ally transcribed and otherwise, as unidirectional tran-
scribed. To visualize the distribution of detectable eRNAs 
across various tissues, we used the UpSetR (version 1.4.0) 
[46] package in R. In addition, we generated a heatmap of 
sample-to-sample distances using the expression values 
of detectable eRNAs, and the pheatmap() function from 
the pheatmap package (version 1.0.10).

Analysis of eRNA characteristics
To compare the GC content of eRNAs with different 
transcriptional directions, we used the “nuc” command 
from the BEDTools software (v2.31.0) to calculate the GC 
content ratio within each eRNA sequence. Subsequently, 
we performed a Student’s t-test to assess the differences 
in GC content between the groups of bidirectional and 
unidirectional eRNAs. The differences in expression 
level between unidirectional and bidirectional eRNAs, 
as well as between eRNAs within and outside SE, were 
evaluated using a two-sided unpaired Wilcoxon test. 
To explore the relationship between eRNA expression 
level and enhancer activity in each tissue, the detectable 
eRNAs were sorted from highest to lowest expression 
level and divided into eight bins. Then, we used the cor.
test function in the R program (version 4.0.5) to assess 
the correlation between the mean eRNA expression 
levels and the mean enhancer activity across these bins 
(method = “pearson”). All the statistical analyses men-
tioned above were conducted using the R programming 
language. In our study, we conducted all gene ontology 
(GO) enrichment analyses using the enrichGO func-
tion from the R package clusterProfiler (version 3.14.3) 
[47]. Functional enrichment analysis of tissue-specific 
expression genes and eRNA target genes was directly 
performed using enrichGO. For eRNA-related functional 
annotation analysis, we extracted neighboring genes and 
performed the analysis.

Deep learning model for prediction of enhancers 
with different transcription patterns
To analyze the sequence features of enhancers with dif-
ferent transcription directions, we used two prominent 

deep learning classification models: DeepSEA [48] and a 
convolutional long short-term memory (LSTM) [49], to 
predict the transcriptional direction of enhancers, both 
being recognized for their efficacy in enhancer sequence 
prediction. For details on the code and usage of these 
two deep learning models, please refer to https://​github.​
com/​minxu​eric/​ismb2​017_​lstm. In our analysis, we used 
the 2-kb enhancer region corresponding to the eRNA as 
the input sequence for the model. We treated 4832 unidi-
rectional transcribed enhancers as negative samples and 
12,883 bidirectional transcribed enhancers as positive 
samples. To split the dataset, we used 85% of the data for 
training, 5% for model selection as a validation set, and 
the remaining 10% for testing the model. We evaluated 
the performance of the two models on the test data by 
calculating the area under a receiver operating charac-
teristic (ROC) curve (AUC) value, the ROC curves were 
plotted using the plotROC [50] package (version 1.3) in 
R.

Transposon analysis
To annotate transposons in the pig genome, we used 
the RepeatMasker [51, 52] software (version 4.1.2-p1) 
and the Repbase-20181026 library (RepeatMasker -par-
allel 15 -species pig -html -e rmblast -s -a -gff -dir pig_
repeat susScr11.fa). We categorized enhancers into two 
groups: transcribed enhancers (TEn and non-transcribed 
enhancers (non-TEn). Specifically, enhancers that inter-
sect with the center points of eRNAs were referred to 
as TEn, while enhancers without intersection with the 
center points of eRNAs were termed non-TEn. We then 
performed a comparative analysis of transposon inser-
tions within TEn and non-TEn using the "intersect" 
command of the BEDTools (v2.31.0) software. First, we 
examined the differences in transposon insertion fre-
quencies between TEn and non-TEn using a two-tailed 
Fisher’s exact test. Furthermore, we calculated the base 
composition of different classes and families of transpo-
sons within TEn and non-TEn using R, and all results 
were visualized using the ggplot2 package. To assess the 
differential enrichment of transposon families in TEn and 
non-TEn, we performed a permutation test by simulat-
ing elements 1000 times within the genomic background. 
The resulting p-values were corrected by the false discov-
ery rate (FDR) method. The enrichment results were then 
visualized using the pheatmap package (version 1.0.10) in 
R.

Identification of tissue‑specific eRNAs and genes
To identify tissue-specific eRNAs and genes, we retrieved 
and analyzed strand-specific RNA-seq data from the 
heart, liver, and spleen tissues of both Duroc and ES pigs. 
It is essential to emphasize that these pigs were the same 

https://github.com/minxueric/ismb2017_lstm
https://github.com/minxueric/ismb2017_lstm
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individuals than those used for enhancer identification 
in the current study. Each tissue type was represented by 
two biological replicates. The quality control and align-
ment methods for the transcriptome data were consistent 
with those mentioned earlier. Gene counts were quanti-
fied using FeatureCounts (version 2.0.2) [53] on the bam 
files of each sample. We calculated the gene expression 
level (TPM) based on the raw count expression matrix, 
taking gene length and library depth into account using 
an R script. In addition, we evaluated the expression 
levels (RPM) of detectable eRNAs in each tissue using 
the Seqmonk software (Babraham Institute), which is 
consistent with the previously described quantification 
methods. Finally, we identified tissue-specific eRNAs and 
genes for each breed by analyzing the expression profiles 
across five tissues: muscle, fat, heart, liver, and spleen. 
Specifically, it is important to note that the tissue speci-
ficity of eRNAs was calculated separately for biological 
replicates 1 and 2. This analysis was conducted using the 
tissue specificity index (TSI) [54], which is calculated as 
follows:

where N is the number of tissues and xi is the expression 
of the eRNA or gene x in tissue i . Genes or eRNAs with 
a TSI greater than 0.8 in both biological replicates of the 
specific tissue in the same breed were deemed to be tis-
sue-specifically expressed in that particular breed.

Enrichment analysis of tissue‑specific eRNAs
In this study, we conducted a hypergeometric test to 
assess the enrichment of tissue-specific expressed eRNAs 
within super-enhancers in eastern and western pig mus-
cle and adipose tissues. This analysis used key param-
eters including the total number of detectable eRNAs in 
each tissue (T), the number of detectable eRNAs within 
super-enhancers (M), the number of tissue-specific 
detectable eRNAs (t), and the number of tissue-specific 
detectable eRNAs within super-enhancers (m). In addi-
tion, we performed a hypergeometric test to assess the 
enrichment of tissue-specific expressed genes within ± 1 
Mb regions of tissue-specific eRNAs. In this analysis, X 
denotes the total number of detectable genes in the tis-
sue, Y represents the count of detectable genes within ± 1 
Mb of eRNAs, x indicates the number of tissue-specific 
expressed genes, and y represents the count of tissue-
specific expressed genes within ± 1 Mb of eRNAs.

To explore the potential involvement of TF in regu-
lating tissue-specific eRNAs, we performed motif 
enrichment analysis using the HOMER [55] software 
on H3K27ac histone peaks within the regions of tissue-
specific eRNAs. We focused on the top 20 enriched TF 

TSI =

∑n
i=i (1− xi)

N− 1
,

motifs within tissue-specific eRNAs and retained only the 
TF that showed significant enrichment (Q-value < 0.01) 
and were expressed in the corresponding tissue. To visu-
alize the enrichment levels, we used the ggplot2 package 
for data visualization.

To investigate the contribution of tissue-specific eRNAs 
to the heritability of tissue-related biological traits, we 
obtained datasets from pigQTLdb, which contained 
GWAS hits and QTL regions associated with various pig 
traits. These traits were classified into five major classes: 
Meat and Carcass, Health, Production, Reproduction, 
and Exterior. After downloading the datasets, we pro-
cessed and extracted the location information for GWAS 
hits and QTL regions associated with each trait class. 
Next, we performed permutation tests by simulating 
tissue-specific eRNA elements within a genomic back-
ground, repeating the process 1000 times (see Additional 
file 1 Supplementary code). This allowed us to assess the 
enrichment of GWAS hits and QTL regions associated 
with different trait classes in tissue-specific eRNAs. It is 
important to note that we expanded the GWAS hits by 
± 20 kb to account for the potential influence of linkage 
disequilibrium (LD) among SNPs.

To investigate the contribution of pig tissue-specific 
eRNAs in elucidating the genetic heritability of human 
diseases, we obtained the susScr11ToHg19.over.chain file 
from the UCSC database and employed the liftOver tool 
(https://​hgdow​nload.​soe.​ucsc.​edu/​admin/​exe/​linux.​x86_​
64/​liftO​ver) [56] to convert pig tissue-specific eRNAs 
into homologous sequence regions in humans. specifying 
a length of 6 kb and a minimum match threshold of 0.5. 
Subsequently, we downloaded GWAS summary statis-
tics for 64 traits from Hook’s study [37]. Using the LDSC 
method [57], we dissected the heritability of these 64 
complex traits in humans based on the pig-driven human 
tissue-specific expression of eRNAs. Finally, we com-
bined and analyzed the partitioned heritability contribu-
tions for all traits and visualized the results in R.

Construction of an eRNA regulatory network
To construct directed eGRN based on tissue-specific 
eRNAs, we used a unique approach that involved iden-
tifying the upstream TF and downstream target genes of 
eRNAs. For the identification of upstream TF, we used a 
combination of eRNA sequence motif scanning and co-
expression analysis between TF and eRNA expression 
levels. Initially, we obtained the custom motif matrices 
files for TF, which contain motif sequences (http://​homer.​
ucsd.​edu/​homer/​custom.​motifs). We then extracted the 
DNA sequence corresponding to the enhancer region of 
each eRNA from the susScr11.fa file using the “getfasta” 
command provided by BEDTools (v2.31.0). Motif scan-
ning was conducted using the scanMotifGenomeWide.

https://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/liftOver
https://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/liftOver
http://homer.ucsd.edu/homer/custom.motifs
http://homer.ucsd.edu/homer/custom.motifs
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pl command (scanMotifGenomeWide.pl custom.motifs 
element.fa -bed) within the HOMER software. TF with 
motif sequences that could be detected on the DNA 
sequence and were expressed in the tissue were consid-
ered as potential upstream regulators of eRNAs. The 
confirmation of these potential upstream TF as true 
regulators of the eRNAs was based on their significant 
correlation with the regulation of eRNA expression in 
20 samples (Rs > 0.5, FDR < 0.05). The correlation analy-
sis was performed using the ‘spearman’ method from the 
psych package (version 2.2.5) in R, with adjustment for 
multiple testing using the FDR method. For the identifi-
cation of target genes of eRNAs, we employed a similar 
strategy of co-expression analysis between eRNAs and 
genes in 20 samples. The expression correlation calcula-
tion method was consistent with the previous approach, 
with a threshold set at Rs > 0.3 and FDR < 0.05. In addi-
tion, the target genes had to be located within a 1 Mb 
range of the eRNA. To further filter the target genes of 
eRNAs, we leveraged the conserved nature of the topo-
logically associated domain (TAD) structure in the 
3D genome across species [58]. We used TAD regions 
derived from 2-week-old large white pig muscle tissue 
and required that both the eRNA and its target genes be 
located within the same TAD region. Lastly, to enhance 
the elucidation of the regulatory mechanisms that under-
lie the traits, we integrated population-based GWAS 
data into our analysis. Specifically, we extracted GWAS 
hits associated with fat and muscle traits from pigQTLdb 
(see Additional file  2: Table  S1). To account for the LD 
effect of SNPs, we specifically screened for eRNAs that 
intersected with the GWAS hits within a ± 20 kb region. 
This approach allowed us to identify eRNAs with poten-
tial regulatory effects on the corresponding traits. Subse-
quently, we constructed separate eGRN using the eRNAs 
associated with muscle and fat traits to uncover the 
genetic regulatory mechanisms underlying these traits. 
The resulting eGRN were visualized using the Cytoscape 
[59] software. To further refine the eGRN in fat tissue, we 
performed capture STARR-Seq experiments in mouse 
3T3 cells, in order to identify eRNA SNPs that affect 
enhancer activity. In the end, we removed eRNAs with-
out enhancer-modulating SNPs in the final eGRN of the 
fat tissue.

Cell culture
Mouse 3T3-L1 fibroblasts (ATCC) were initially cultured 
in DMEM supplemented with 10% calf serum (B7446, 
Sigma-Aldrich) to promote cell proliferation. During the 
induction of cell differentiation, a transition from calf 
serum to 10% fetal bovine serum (FBS) (10091148, Gibco) 
was carried out upon the initial phase of cell contact inhi-
bition. The aim of this substitution was to enhance the 

initiation of lipid droplet formation effectively. Two days 
after replacement of the FBS, the induction of differentia-
tion was accomplished by incubating the cells in differ-
entiation medium A (DMEM containing 0.5 mM IBMX 
(I5879, Sigma), 1 μM DEX (D1756, Sigma-Aldrich), and 
10 μg/mL insulin (HY-P0035, MedChemExpress), and 
10% FBS) for 2 days, followed by differentiation medium 
B (DMEM containing 10 μg/mL insulin and 10% FBS) for 
subsequent days with a medium change performed every 
two days to achieve full differentiation into mature adipo-
cytes (Day 8).

SNP screening for STARR‑seq
To identify regulatory SNPs in the fat-related eGRN 
that regulate differential fat deposition abilities between 
eastern and western pigs, we established screening cri-
teria for SNPs that were assessed using STARR-seq for 
regulatory activity. Initially, we obtained genome-wide 
SNP data from the PigVar database [60] for eastern and 
western pig populations. We then overlapped this data 
with eRNAs to identify the SNP locations within eRNAs. 
To ensure the detection of SNPs within eRNAs in both 
eastern and western pig populations collected by our 
research group, and to assess their potential influence on 
the differential fat phenotypes between the two groups, 
we focused on SNPs that showed allele frequency differ-
ences between the eastern and western pig populations 
collected by our team, with a minor allele frequency 
(MAF) difference exceeding 0.3, and ensuring that the 
MAF in the whole genome mixed pool of eight eastern 
and eight western pigs was higher than 0.05. SNPs that 
met the selection criteria were chosen as candidate SNPs 
for the STARR-seq assay, allowing for the detection of 
their regulatory activity on DNA elements. The proto-
col for the study involving the 16 pigs obtained approval 
from Huazhong Agricultural University (Protocol code: 
SYXK(e)2020-0084) and the Institutional Animal Care 
and Use Committee.

Identification of regulatory SNPs by STARR‑Seq
Candidate SNPs with regulatory functions were identi-
fied using a previously reported STARR-Seq strategy 
[35, 61]. Initially, custom primers for the 22 enhancer 
elements containing candidate SNPs were designed 
and synthesized by Sangon Biotech Co., Ltd (Shanghai, 
China) (see Additional file 3: Table S2). To introduce SNP 
polymorphisms into the screening process, DNA sam-
ples extracted from various tissues of eight eastern and 
eight western pigs were pooled in equal amounts and 
used as PCR templates. The PCR amplification param-
eters were 25 cycles consisting of 94 °C for 5 min, 95 °C 
for 30 s, 55 °C for 30 s, 72 °C for 1 min, and a final exten-
sion at 72  °C for 7  min. The reaction mixture, with a 
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total volume of 50  μL, contained 1  μg of substrate and 
0.4  μM of primers. The amplified products were puri-
fied and sonicated to achieve sizes ranging from 300 to 
400 bp. These sonicated fragments were ligated into the 
hSTARR-seq_ORI vector (#99296, addgene). The recom-
binant vectors were transformed into E. coli DH10B 
cells (Life Technologies, Eragny, France) by a Gene Pul-
ser Xcell Electroporation System (Bio-Rad Laborato-
ries, Richmond, CA, USA) to produce the input plasmid 
library, which then was transfected into 3T3-L1 cells 
by lipofectamine (jetPRIME, Polyplus 101000046). The 
STARR-Seq input NGS library was derived from the 
input plasmid library, whereas the output NGS library 
was generated from transcripts produced by the input 
plasmids. To be clear, the input NGS library was created 
by directly amplifying SNP-containing inserts from the 
plasmid DNA used for cell transfection, thereby serving 
as a reference for the initial representation of SNP alleles 
in the starting plasmid pool. In contrast, the output NGS 
library assesses the abundance of self-transcribed mRNA 
originating from insert fragments within the transfected 
plasmid pool. The experimental details of STARR-Seq 
are described in previous publications [35, 62]. Briefly, 
to prepare the input NGS library, the input library was 
prepared using 200 ng of plasmid template, divided into 
four reactions of 50 μL each. PCR amplification was car-
ried out with the specified primers containing Illumina 
adaptors [forward: 5ʹ-AAT​GAT​ACG​GCG​ACC​ACC​
GAG​ATC​TACAC-index-ACA​CTC​TTT​CCC​TAC​ACG​
ACG​CTC​TTC​CGA​TCT-3ʹ; reverse: 5ʹ-CAA​GCA​GAA​
GAC​GGC​ATA​CGA​GAT​-index-GTG​ACT​GGA​GTT​
CAG​ACG​TG-3ʹ] and the following conditions: 95 °C for 
3 min, 98  °C for 20 s, 65  °C for 15 s, 72  °C for 30 s (go 
to step 2 for 15 cycles, 72  °C for 2 min). To prepare the 
output NGS library, the transfected cells were harvested 
after 24 h. Total RNAs were extracted, and mRNAs were 
enriched by oligodT and reverse transcribed using a plas-
mid specific primer [CAA​ACT​CAT​CAA​TGT​ATC​TTA​
TCA​TG]. Following reverse transcription, the cDNA 
products were purified and amplified with primers con-
taining Illumina adaptors to construct the output NGS 
libraries [forward: 5ʹ-AAT​GAT​ACG​GCG​ACC​ACC​GAG​
ATC​TACAC-index-ACA​CTC​TTT​CCC​TAC​ACG​ACG​
CTC​TTC​CGA​TCT-3ʹ; reverse: 5ʹ-CAA​GCA​GAA​GAC​
GGC​ATA​CGA​GAT​-index-GTG​ACT​GGA​GTT​CAG​
ACG​TG-3ʹ]. The PCR amplification was performed using 
the KAPA enzyme (KK2602, Roche) with the following 
cycling conditions: 95 °C for 3 min, 98 °C for 20 s, 65 °C 
for 15 s, 72 °C for 30 s (go to step 2 for 18 cycles, 72 °C for 
2 min). Both the input NGS library and the output NGS 
libraries were sequenced using the PE150 strategy on the 
NovaSeq 6000 platform. In this study, we obtained four 
output NGS libraries (the RNAs from each biological 

replicate generated two output libraries) and one input 
NGS library, the output libraries yielded a range of 2.8 
to 3.4 million reads each, with the input library contain-
ing 8.5 million reads. After performing quality control 
and removing PCR duplicates, the reads from the two 
biological replicates were highly correlated (see Addi-
tional file  4: Figure S1a), Therefore, we merged the two 
replicates for further analysis to increase statistical power 
for calling regulatory SNPs. When calculating the effect 
size of SNPs, only SNPs with a coverage exceeding 20 in 
both input and output libraries were considered. The size 
of the effect of each SNP was determined by calculating 
the fold change in allele ratios (output/input). Signifi-
cance of the differences in allele ratios was assessed using 
a two-tailed Fisher’s exact test. The raw sequence data of 
STARR-seq used in this paper have been submitted to the 
Genome Sequence Archive (GSA; https://​ngdc.​cncb.​ac.​
cn/) under accession number CRA011292.

Gene function validation by siRNA
The siRNAs targeting the RB1, SLC27A6, RGMA, APLF, 
UBTD2 genes, and the negative control were custom-
synthesized by Ribo Biological Co., Ltd (Guangzhou, 
China) (see Additional file 5: Table S3). 3T3-L1 cells were 
seeded in a six-well culture plate and transfected at 80% 
confluency. The medium was refreshed 4 to 6  h after 
the transfection process. To ensure continuous suppres-
sion of the target gene expression at a low level, a sub-
sequent knockdown was conducted on the fourth day of 
the induced differentiation process, with a repeat trans-
fection of siRNA. Then, RNA was extracted using the 
TriZol reagent, purified by chloroform extraction, pre-
cipitated with isopropanol, and dissolved in RNase-free 
water. Subsequently, 1  μg of RNA was used for cDNA 
synthesis through reverse transcription in a 20-μL reac-
tion. ChamQ Universal SYBR qPCR Master Mix (Q711 
Vazyme) was used for RT-qPCR, 1 μL of cDNA as tem-
plates and 0.2 μM primers. The PCR conditions included 
an initial denaturation at 95  °C for 30  s, followed by 40 
cycles of 95  °C for 10  s, 60  °C for 30  s, and a final step 
of 95 °C for 15 s, 60 °C for 60 s, and 95 °C for 15 s. The 
degree of differentiation was assessed by fluorescence 
microscopy and reverse transcription (RT)-qPCR analy-
ses. Finally, we used the GraphPad Prism 5 software to 
perform a t-test to compare the expression levels of 
target genes and marker genes with those of the nega-
tive control, and then visualized the expression levels 
accordingly.

Oil red O staining
When 3T3-L1 cells were fully differentiated into adi-
pocytes (after 8  days), cells were fixed with a 4% for-
malin solution (BL539A, biosharp) for 15 min at 

https://ngdc.cncb.ac.cn/
https://ngdc.cncb.ac.cn/
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room temperature. The fixed cells were then washed 
three times with phosphate buffered saline (PBS) 
(C10010500BT, Gibco) for 1 min each and stained with 
Oil Red O (G1260, Solarbio) at 37 °C for 1 h. Stained cells 
were washed twice with 60% isopropanol (1.17029.023, 
GHTECH) for 1 min each and then washed with PBS, 4 
to 5 times for 1 min each. Formation of lipid droplets was 
observed under a microscope.

Results
Identification and feature analysis of eRNAs in muscle 
and fat tissues
To identify eRNAs on a genome-wide scale in muscle 
and fat tissues from both ES and Duroc pigs, first we 
identified enhancers defined based on H3K27ac signal 
intensity [36], in line with the recognized definition that 
eRNAs are transcribed from enhancer regions. In total, 
we identified 69,881 enhancers in muscle and fat tissues 
from ES and Duroc pigs. Among them, 31,336, 27,148, 
51,898, and 36,635 enhancers were identified in Duroc 
muscle, Duroc fat, ES muscle, and ES fat, respectively 
(see Additional file 6: Table S4). Samples were clustered 
based on H3K27ac signal intensity, which showed that 
enhancer activity was more conserved between breeds 
than between tissues (Fig. 1a). Next, based on the coordi-
nates of these enhancers, we used RNA-seq data from the 
same individuals for which H3K27ac data were used to 
quantify the expression levels of eRNAs in each respec-
tive tissue, referring to the identification methodology 
used in a previous eRNA study [29]. Using RNA-seq 
data, the expression level of eRNAs was quantified with 
the SeqMonk software, which is referred to as the Nancy 
method [30] (see Additional file 7: Figure S2a). Finally, we 
identified 17,715 eRNAs, of which 12,430, 14,828, 16,214, 
and 13,612 were detected in Duroc muscle, Duroc fat, 
ES muscle, and ES fat, respectively (see Additional file 8: 
Table  S5). eRNA expression clustering revealed high 
reproducibility between biological replicates and a higher 
expression similarity between breeds than between tis-
sues (Fig.  1c). Although eRNA expression was found 
across all pig breeds and tissues, a small number of the 
eRNAs were expressed in a tissue/breed specific pattern 
(Fig. 1b and see Additional file 9: Figure S3). In each tis-
sue, the expression of eRNA is positively correlated with 
H3K27ac enhancer activity (P < 2.2e−16), which is con-
sistent with prior investigations in this field (Fig. 1d and 
see Additional file  10: Figure S4a–c). We also identified 
SE in muscle and fat tissues from ES and Duroc pigs (see 
Additional file 11: Figure S5a–d). The significantly higher 
expression of eRNAs within than outside SE (P < 2.2e−16) 
(Fig. 1e), underscored the potential of eRNAs to regulate 
key genes that define cell identities [63, 64].

eRNA transcription was previously known to be bidi-
rectional, but subsequent studies have shown that not 
all eRNAs are bidirectionally transcribed [65, 66]. Con-
sistently, we found that only about 3/4 of the eRNAs in 
each tissue were bidirectionally transcribed (Fig.  1f ). 
Compared to unidirectionally transcribed eRNAs, the 
bidirectionally transcribed eRNAs have lower expression 
(Fig.  1g) and higher GC levels (Fig.  1h). Furthermore, 
the adjacent gene sets associated with both unidirec-
tional and bidirectional transcribed eRNAs demonstrate 
enrichment in distinct biological processes (see Addi-
tional file  7: Figure S2b). In spite of a modest but sig-
nificant difference in GC content for these two eRNA 
classes, distinguishing enhancers with distinct transcrip-
tion directions posed a challenge when relying on higher-
level sequence features. Using deep learning methods, 
including DeepSEA [48] and LSTM [49], we observed 
limited discriminatory power, with AUC values of 0.54 
and 0.53, respectively (Fig. 1i). To the best of our knowl-
edge, this compilation of bidirectional and unidirectional 
eRNAs represents the first comprehensive eRNA expres-
sion profile documented in pig tissues.

The long terminal repeat (LTR) retrotransposon family 
might promote enhancer transcription
In mammals, transposon sequences account for about 
half of the entire genome [67]. They play a significant 
role in the generation of numerous cis-regulatory ele-
ments by incorporating sequence features that are rich 
in information into the genome, including TF binding 
motifs [68, 69]. In our study, about 81% of the identified 
enhancers marked by H3K27ac had transposon inser-
tions, which implies that transposons have an important 
role in the formation of enhancers. However, whether 
certain types of transposons preferentially contribute 
to the formation of eRNA loci is unexplored. Following 
this idea, we classified the enhancers into two catego-
ries: transcribed enhancers (TEn) and non-transcribed 
enhancers (non-TEn). We found that non-TEn (79%) had 
subtle but significantly lower frequencies of transposon 
insertion events than TEn (83%) (Fig.  2a; P < 2.2e−16). 
The percentage of transposon bases in TEn was also 
higher than in non-TEn (Fig. 2b), and this difference was 
mainly due to an increased presence of the long terminal 
repeat (LTR) retrotransposon family in TEn, compared 
to short (SINE), and long (LINE) interspersed sequences, 
DNA repeats, or other types of repeats (Fig.  2c), which 
indicates a more prominent role of retroviral LTR in the 
transcription of enhancers. To further study the effect of 
the LTR retrotransposon family on the transcription of 
enhancers, we performed enrichment analysis of different 
transposon families in enhancers. All LTR families were 
significantly and specifically enriched in TEn compared 
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Fig. 1  Identification and regulatory characteristics of eRNAs. a A heatmap revealed enhancer intensity dynamics in muscle and adipose tissues 
between Enshi Black (ES) and Duroc pigs. Enhancer intensity was calculated by normalized H3K27ac ChIP-seq signals. b Overlap of detectable 
eRNAs between different tissues and breeds. The bar chart in light green displays the number of detectable eRNAs for each tissue, the blue 
diagram illustrates the degree of overlap between detected eRNAs across different tissues and breeds. c Heatmap displaying the calculated 
Euclidean distances between samples based on the variance-stabilizing transformation of the eRNA expression matrix. d Pearson correlation 
between eRNA expression and enhancer activity in Duroc muscle tissue. e Comparison of eRNA expression levels within and outside 
of super-enhancers. Statistical significance was assessed using the two-sided unpaired Wilcoxon test (**P < 2.2e−16). f Proportion 
of detectable unidirectional- and bidirectional-transcribed eRNA per tissue. g Expression levels of unidirectional- and bidirectional-transcribed 
eRNAs in each tissue. Statistical significance was assessed using the two-sided unpaired Wilcoxon test (**P < 2.2e−16). h GC content 
of unidirectional- and bidirectional-transcribed eRNA sequences in each tissue. Statistical significance was assessed using the Student’s t-test 
(**P < 2.2e−16). i Deep learning model distinguishes transcriptional directions of eRNAs
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to non-TEn except for the LTR/ERVK family (Fig.  2d). 
The limited enrichment of this specific LTR family in the 
TEn may be attributed to its infrequent presence within 
the genome, which subsequently reduces the statistical 
robustness of the enrichment analysis (Fig. 2e). In sum-
mary, we infer that the insertion of LTR sequences might 
play an important role in eRNA transcription.

Tissue‑specific eRNAs exhibit robust regulatory potential 
in tissue‑specific‑biological processes
Next, we explored the tissue specificity of eRNAs, as 
the tissue-specific regulatory landscape is thought to 
have a substantial impact on trait and disease etiology 
[70–72]. Our hypothesis was that eRNAs that are spe-
cifically expressed in pig muscle and fat tissues are closely 
related to pork production traits. To this end, we down-
loaded additional RNA-seq data from heart, liver and 
spleen tissues of ES and Duroc pigs (GEO Data reposi-
tory GSE143288). Then, we analyzed the expression level 
of the 17,715 eRNAs in five tissues across the two breeds 
(see Additional file  12: Table  S6). The heatmap cluster-
ing analysis revealed a striking consistency in eRNA 

expression patterns across these two breeds within the 
same tissue, quantified in reads per million (RPM). While 
most biological replicates displayed cohesive clustering, 
it is noteworthy that, in one case, a replicate of skeletal 
muscle tissue from the ES breed clustered with ES heart 
tissue. This deviation could be ascribed to the underly-
ing physiological and functional similarities between 
the skeletal and cardiac muscles [73] (see Additional 
file  9: Figure S3). Interestingly, this similarity in eRNA 
expression within tissues transcended breed variations. 
Conversely, when examining a particular breed across 
different tissues, the eRNA expression patterns displayed 
more divergence. This analysis underscores the pres-
ence of tissue-specific eRNAs, which implies that they 
play vital roles in orchestrating tissue-specific regulatory 
processes.

Next, we used the tissue specificity index (TSI) algo-
rithm to identify tissue-specific eRNAs in each tissue 
of each breed (see “Methods” for details). In total, we 
identified 643, 1188, 870, and 670 eRNAs specifically 
expressed in Duroc muscle, Duroc fat, ES muscle, and ES 
fat tissues, respectively (Fig. 3a and see Additional file 13: 

Fig. 2  The effect of transposons on enhancer transcription. a Percentages of transposon insertion in transcribed enhancers (TEn) 
and non-transcribed enhancers (non-TEn). Statistical significance was assessed using Fisher’s exact test. b Proportion of transposon bases within TEn 
and non-TEn. c Proportion of enhancer occupancy by TE classes. d Enrichment analysis of transposon family in TEn and non-TEn. Statistical 
significance was determined using a permutation test with genomic background simulation of elements performed 1000 times and adjusted false 
discovery rate (FDR) (*P < 0.05). e Number of long terminal repeats (LTR) retrotransposon families annotated in the pig genome
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Table S7). The genes that were localized nearest to these 
tissue-specific eRNAs were significantly enriched in bio-
logical pathways that are involved in the differentiation 
and development of the corresponding tissues (Fig.  3b). 
Although the neighboring genes of Duroc fat-specific 
eRNAs did not exhibit direct enrichment in pathways 
specifically associated with fat deposition, they displayed 
enrichment in pathways relevant to adipogenesis, such as 
the Wnt signaling pathway [74, 75]. However, the neigh-
boring genes of non-tissue-specific eRNAs exhibited a 
remarkable pattern of enrichment in essential biologi-
cal pathways that are shared across diverse tissues (see 
Additional file  14: Figure S6). These GO analyses sug-
gested that tissue-specific eRNAs play an important 
role in regulating biological processes that are relevant 
to tissue identity. With the exception of Duroc adipose 
tissue (P = 0.056), we found that tissue-specific eRNAs 

were significantly enriched within SE of the correspond-
ing tissues (Fig. 3c). Furthermore, we identified 421, 506, 
594 and 412 genes that were specifically expressed in 
Duroc muscle, Duroc fat, ES muscle and ES fat tissues, 
respectively (Fig. 3a and see Additional file 13: Table S7). 
In alignment with the adjacent genes of tissue-specific 
eRNAs, tissue-specific genes were also significantly 
enriched in biological pathways that are relevant to tis-
sue identity, except for Duroc fat (see Additional file 15: 
Figure S7). The functional relevance of the tissue-specific 
eRNAs and genes led us to speculate that tissue-specific 
genes are primarily regulated by tissue-specific eRNAs. 
To explore the potential regulatory relationship between 
tissue-specific eRNAs and tissue-specific genes, we con-
ducted an enrichment analysis comparing tissue-specific 
genes to tissue-specific eRNAs within a ± 1  Mb region, 
which is a commonly employed criterion for assigning 

Fig. 3  Analysis of the biological functions and the potential regulatory mechanisms of tissue-specific eRNAs. a The number of tissue-specific eRNAs 
and genes in each tissue between Enshi Black (ES) and Duroc pigs. b Gene ontology (GO) analysis reveals biological process pathways relevant 
to eRNAs expressed in a tissue- and breed-specific manner. GO enrichment analysis was performed based on the neighboring genes of eRNAs. 
c Tissue-specific genes were significantly enriched within ± 1 Mb distance of tissue-specific eRNAs. Statistical significance was assessed using 
the hypergeometric test (**P < 0.01). d Enrichment analysis of tissue-specific eRNAs in super-enhancers (SE). Statistical significance was assessed 
using the hypergeometric test (**P < 0.01). e Motif enrichment analysis of tissue-specific eRNAs. Red dots represent transcription factors (TF) 
with a DNA binding motif that were significantly enriched in adipose-specific eRNAs; green dots represent those that were significantly enriched 
in muscle-specific eRNAs; dark blue dots represent those that were significantly enriched in both fat and muscle-specific eRNAs. The size of the dots 
represents the expression level of corresponding TF
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putative target genes to eRNAs [27, 31]. Our findings 
revealed a significant enrichment of tissue-specific gene 
locations in tissue-specific eRNAs within ± 1 Mb, in the 
same tissue (Fig. 3d). This enrichment implies that tissue-
specific eRNAs may have robust regulatory activities on 
the expression of tissue-specific genes. To investigate 
which TF might be involved in the regulation of tissue-
specific eRNAs, we performed TF binding motif enrich-
ment analysis of tissue-specific eRNAs. As expected, the 
top enriched motifs in tissue-specific eRNAs are DNA 
binding motifs of master TF that are closely related to tis-
sue development. For example, MYOG, MYOD, MYF5, 
MEF2A, and MEDF2D were significantly enriched in 
muscle-specific eRNAs, while ATF3 [76, 77], BACH1 
[78], and STAT1 [79] were significantly enriched in fat-
specific eRNAs (Fig.  3e; Q-value < 0.01). Therefore, tis-
sue-specific eRNAs are likely to function downstream of 
these master TF to establish and maintain tissue identity. 
Accordingly, DNA variants that dysregulate these eRNAs 
might significantly contribute to the genetic components 
underlying pork economic traits relevant to muscle and 
fat.

Genetic contribution of tissue‑specific eRNAs 
to tissue‑relevant traits
Numerous post-GWAS studies have dissected the herit-
ability of complex traits by fine-mapping DNA variants 
in the non-coding regions of genomes [80, 81]. Thus, 
we postulate that tissue-specific eRNAs might provide 
a unique resource to functionally interpret GWAS sig-
nals that lie outside of coding regions, and thereby pin-
pointing novel causal regulatory elements and genes. To 
explore how muscle- and fat-specific eRNAs might shed 
light on the genetic basis of muscle- and fat-relevant 
pork production traits, we first collected all GWAS hits 
and QTL associated with different porcine traits from 
the pig QTLdb [82]. These traits are categorized into five 
major groups (Meat and Carcass, Health, Production, 
Reproduction, Exterior) in the pigQTLdb database. We 
observed a significant and specific enrichment of mus-
cle- and adipose-specific eRNAs within 20-kb linkage 
regions in the GWAS signals related to meat and car-
cass traits, as well as to production traits (Fig. 4a). These 
two groups of traits are largely affected by muscle and 
fat development. In the enrichment analysis using QTL 
regions, muscle- and fat-specific expression eRNAs were 
not only enriched in muscle and fat development-related 
traits (Fig. 4b), but also in reproductive and health traits. 
This lack of enrichment specificity might be due to the 
fact that the pig QTL regions were generally much longer 
than the GWAS regions.

To further explore the biological importance of mus-
cle- and fat-specific eRNAs, we took advantage of the 

human GWAS, which usually provide sharper GWAS 
signals, and evaluated how the human orthologs of these 
tissue-specific eRNAs contribute to various human 
traits. The tissue-specific eRNAs exhibit a high level of 
sequence homology between pigs and humans, and the 
majority of them could be successfully lifted over to the 
human genome (Fig. 4c). In the comparison between our 
results and the summary statistics data from 64 GWAS 
for human traits collected by Hook and McCallion [37], 
the stratified linkage disequilibrium score regression 
(S-LDSC) analysis revealed that the human orthologs 
of pig muscle- and fat-specific eRNAs were signifi-
cantly enriched in waist-hip ratio GWAS associated loci 
(Fig. 4d, e and see Additional file 16: Table S8). This find-
ing is consistent with the notion that the regulation of 
waist-hip ratio involves coordinated mechanisms that 
govern muscle growth and fat deposition. Thus, we pro-
vided evidence that pig muscle- and fat-specific eRNAs 
might constitute highly conserved transcriptional regula-
tory networks that underlie crucial muscle- and fat-rele-
vant phenotypes across pigs and humans.

Construction of eRNA‑mediated gene regulatory networks 
underlying muscle‑ and fat‑relevant traits
To pinpoint tissue-specific eRNAs that potentially influ-
ence meat-relevant traits, we present a novel approach 
to construct gene regulatory networks. This innova-
tive method enables the identification of eRNAs, which 
harbor DNA variants that are likely to contribute to 
phenotypic variation. Compared to previous co-expres-
sion-based gene regulatory networks (GRN) that link 
genes with undirected edges [83], our networks (referred 
to as eGRN) are eRNA-centric, have directed edges and 
leverage information from population genetics studies. 
Our methodology involves several key steps. First, we 
used co-expression analysis and motif scanning to asso-
ciate upstream TF with tissue-specific eRNAs. Next, we 
used a combination of co-expression patterns, a 1-Mb 
distance cutoff, and topologically associated domain 
(TAD) boundaries to link these eRNAs to potential 
downstream target genes. Subsequently, we leveraged pig 
GWAS data to keep only the gene regulatory networks 
mediated by eRNAs that harbor DNA variants exhibiting 
potential associations with meat-relevant traits (Fig.  5a, 
and see “Methods”).

Based on our approach, 61% of the tissue-specific 
expression eRNAs were assigned to at least one target 
gene and most of the eRNAs were assigned to no more 
than five (1680/2751) (see Additional file 17: Figure S8A). 
eRNAs and their target genes showed notable and coor-
dinated expression changes, which suggest a robust and 
synergistic relationship between them (Fig.  5b). Gene 
ontology enrichment analyses revealed that although 
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the target genes of Duroc fat- and ES muscle-specific 
eRNAs were not enriched in tissue-related pathways, 
those of Duroc muscle- and ES fat-specific eRNAs were 
both significantly enriched in tissue-related biologi-
cal pathways (see Additional file  17: Figure S8b). This 

pattern is reminiscent of the selection for muscle mass 
and fat deposition in Duroc and ES during pig breed-
ing practice, respectively, indicating distinct regulatory 
roles of the tissue-specific eRNAs that underlie selec-
tion during the domestication and breed development 

Fig. 4  Contribution of tissue-specific eRNAs for the genetic basis of pig economic traits. a Enrichment of genome-wide association study (GWAS) 
signals of five major pig economic traits in tissue-specific eRNAs. A permutation test was performed with genomic background simulation 
of eRNA elements conducted 1000 times and a false discovery rate (FDR) adjusted for statistical significance (*P < 0.05; **P < 0.01). b Enrichment 
of tissue-specific eRNAs in trait-related quantitative trait loci (QTL) regions. Statistical significance was determined using a permutation test 
with an adjusted FDR (*P < 0.05; **P < 0.01). c Number of pig tissue-specific eRNAs and their homologs in the human genome. d A heatmap 
displaying stratified linkage disequilibrium score regression (S-LDSC) heritability enrichment of 64 human GWAS traits in human homologs of pig 
tissue-specific eRNAs. Data are hierarchically clustered by GWAS and tissues. * represents significant enrichment (P < 0.05). e A dot plot displaying 
the statistical significance of S-LDSC enrichment for waist-hip ratio. A red dashed line is marked at −log10(0.05)

Fig. 5  Construction of potential trait-affecting eRNA-mediated gene regulatory networks (eGRN) by integrating multi-omics data. a Schematic 
diagram of the eGRN construction method. Motif scanning and expression correlation between transcription factors (TF) and eRNA expression 
levels were used to predict upstream TF of eRNAs. The distance between eRNAs and genes and the expression correlation between their expression 
levels were used to predict downstream target genes of eRNAs, topologically associated domain (TAD) structure was further used to filter 
out eRNAs and genes that were not in a same TAD. Genome-wide association study (GWAS) data were used to further filter for trait-associated 
hub eRNAs that harbor DNA variants that are associated with pig economic traits. b Heat maps showing the globally correlated changes 
of the expression of eRNAs and target genes. c eGRN for muscle- and fat-related traits. The color of a TF represents the number of its downstream 
regulatory eRNAs, where a darker color indicates a larger number of regulatory eRNAs. d Differential expression of eRNA target genes between ES 
and Duroc pigs (ES vs Duroc) in fat-related eGRN

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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of pigs. The eGRN of muscle and fat tissues encompass 
1023 and 711 regulatory relationships, respectively, 
involving upstream TF binding to eRNA-transcribing 
enhancers for the regulation of downstream target genes 
(Fig. 5c and see Additional file 18: Table S9). Excitingly, 
we found that the upstream TF of these eRNAs include 
many known master regulators for tissue development, 
such as MYOG, MYOD, MYF5, MEF2A, and MEDF2D 
in the muscle eGRN, and CREB5, IRF4, EBF1, EBF2, 
KLF6, KLF4, GATA2, GATA3, KLF14, and STAT6 in 
the fat eGRN [84, 85]. In addition, the target genes of 
the eGRN also include genes that have been reported to 
regulate tissue development, such as MYOD1, MYH1, 
MYH2 in the muscle eGRN, as well as SCD and SLC27A6 
in the fat eGRN. Interestingly, the expression level of 
MYOD1, MYH1, MYH2 was higher in Duroc muscle 
than in ES muscle, while the expression level of SCD and 
SLC27A6 was higher in ES fat than in Duroc fat (Fig. 5d 
and see Additional file  17: Figure S8c). This difference 
in gene expression is consistent with differences in lean 
mass ratio and fat deposition between Duroc and ES pigs. 
Taken together, these results provide compelling support 
for the reliability of our eGRN in capturing essential tran-
scriptional regulatory units that underlie relevant traits.

Unraveling novel regulators of adipocyte differentiation 
by refining eGRN with STARR‑Seq
It is important to note that GWAS associations between 
genetic loci and traits are often statistical in nature, rather 
than indicative of causal relationships. Thus, fine-map-
ping trait-associated genetic loci is pivotal for unrave-
ling the mechanisms of trait inheritance. In our study, 
we constructed an eGRN through eRNA-transcribing 
regions that harbor DNA variants with potential pig 
GWAS signals. To enhance the precision of the eGRN, 
we subsequently performed capture STARR-Seq experi-
ments, enabling high-throughput screening of enhancer 
activity (Fig. 6a). Through these experiments, we refined 
the eGRN by selectively retaining eRNA regions that 
demonstrated allele-specific enhancer activity. Taking the 
fat trait-associated eGRN as an example, we exploited a 
series of criteria to select SNPs within eRNA-transcrib-
ing regions for STARR-seq validation. These criteria 
encompassed SNPs that were detected within the pooled 
population of eastern and western pigs, characterized by 
a minimum difference in minor allele frequency (MAF) 
of 0.3 between the two populations, as well as a MAF 
exceeding 0.05 in the mixed pool. After applying these 
criteria (see Additional file  4: Figure S1b), we selected 
107 SNPs for STARR-seq assays (see Additional file  19: 
Table S10), and identified 16 regulatory SNPs that influ-
enced enhancer activity in 3T3 cells (Fig.  6b and see 
Additional file 20: Table S11). We designated the eRNAs 

with these regulatory SNPs as hub eRNAs and used them 
to identify refined eGRN that might play crucial roles 
in regulating fat-related economic traits (see Additional 
file 21: Table S12). Within the refined eGRN, we observed 
24 potential target genes that could be regulated by 
eRNAs (Fig. 6c).

To confirm the regulatory role of the refined eGRN on 
fat-related traits, we performed RNA interference experi-
ments on five randomly selected target genes (SLC27A6, 
RB1, APLF, RGMA, UBTD2) in the widely used pre-adi-
pocyte 3T3-L1 cell line derived from mouse embryos, 
which serves as a popular model for investigating adi-
pocyte differentiation. The mouse Pparg, Cebpa, and Lpl 
genes, which are widely recognized as master regulators 
of adipogenesis [86–89], were used as marker genes to 
assess the impact of the target genes on adipogenesis. 
Among the five potential target genes, we found that 
APLF, RGMA, and UBTD2 played a negative role in adi-
pogenesis while SLC27A6 and RB1 played a positive role 
(Fig.  6e). Oil staining experiments revealed consistent 
results (Fig. 6d). It is noteworthy that the APLF, RGMA, 
and UBTD2 genes exhibited higher expression levels in 
western Duroc pigs that are characterized by high lean 
meat mass. By comparison, the SCL27A6 and RB1 genes 
showed higher expression levels in eastern ES pigs that 
are known for their superior fat deposition capacity 
(Fig. 5d). Therefore, the results of the in vitro experimen-
tal validation are highly consistent with the correlation 
between gene expression and meat-relevant phenotypes, 
indicating that these genes hold promising potential 
as important candidate genes for future improvement 
of pork quality. To summarize, we refined fat eGRN by 
STARR-seq assays, and further validated the functional-
ity of five genes in adipocyte differentiation using RNA 
interference experiments. Our findings not only provide 
potential molecular markers for accelerating pig breeding 
programs, but also offer a novel eRNA-centric approach 
for fine-mapping GWAS signals and constructing crucial 
gene regulatory networks that underlie complex traits.

Discussion
eRNAs are emerging as a type of critical players in tran-
scriptional regulation, which means that they are particu-
larly relevant for deciphering the genetic basis of complex 
traits and diseases. In spite of substantial efforts to map 
eRNAs in various biological contexts, there has been lim-
ited research on building eRNA-centric transcriptional 
regulatory networks and using these networks to pin-
point important genes that potentially affect phenotypes. 
In this study, by combining whole-transcriptome RNA-
Seq-based eRNA profiling, GWAS signals and high-
throughput STARR-Seq experiments, we present a novel 
approach to construct trait-affecting hub eGRN and to 
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Fig. 6  Refining eRNA-mediated gene regulatory networks (eGRN) by self-transcribing active regulatory region sequencing (STARR-Seq) 
and subsequent identification of functional genes in adipocyte differentiation. a The workflow for STARR-seq strategy to detect SNPs influencing 
DNA activity. b Regulatory SNPs identified by STARR-seq that affect enhancer activity. c Refined eGRN underlying fat-related traits identified 
through regulatory SNP screening. d siRNA knockdown effects of five potential target genes on adipocyte differentiation assessed by Oil Red O 
Staining in 3T3-L1 pre-adipocytes. NC represents the blank control. e siRNA knockdown effects of potential target genes on marker gene expression 
during adipocyte differentiation in 3T3-L1 pre-adipocytes. (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001)
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identify potential trait-affecting genes. We demonstrate 
the utility of this approach in dissecting the genetic basis 
of pork production traits and propose potential fat depo-
sition-affecting genes with evidence on their role in adi-
pocyte differentiation in a cell line model. In light of the 
exponential growth in whole-transcriptome RNA-Seq 
data across diverse biological contexts, the ever-expand-
ing repertoire of GWAS loci identified by large-scale 
population genetic studies (such as UK Biobank), and the 
rising utilization of STARR-Seq (or other MPRA-based 
techniques) for studying the cis-regulatory impacts of 
non-coding DNA variants, we believe that our approach 
possesses great potential for extensively unraveling the 
genetic basis underlying a wide spectrum of complex 
traits and diseases across diverse species.

Biological systems involve a diversity of regulatory pro-
cesses. To understand the molecular bases that underlie 
these processes, GRN have been extensively built by dif-
ferent experimental and computational methods. Here, 
we present a novel approach to construct GRN based 
on tissue-specific eRNAs that have substantial implica-
tions in the formation of muscle and fat-related traits. 
Compared to conventional gene regulatory networks, 
our eGRN have directionality, encompassing the intri-
cate regulatory cascade that unfolds from upstream TF to 
eRNAs, and subsequently extending to downstream tar-
get genes. Using muscle and fat as examples, we showed 
that in our eGRN, many upstream TF of eRNAs are 
known major regulators that affect tissue development, 
and the functional annotation of downstream target 
genes exhibited close relevance to tissue-related bio-
logical processes. Notably, the precision and robustness 
of the eGRN were further increased after we combined 
the GWAS data and STARR-seq data. As an example, 
through the identification of eRNAs that harbor cis-reg-
ulatory SNPs based on pig GWAS signals, we uncovered 
hub eRNAs and their potential target genes that influ-
ence adipocyte differentiation in 3T3-L1 cells. Although 
our approach for network construction has proven effec-
tive and indicates general applicability, it is important to 
acknowledge its inherent limitations. For instance, when 
identifying target genes of eRNAs, we typically refer to 
previous research [27, 31], which suggests that poten-
tial target genes of eRNAs are generally located within a 
± 1 Mb region of the eRNA. Nevertheless, distal enhanc-
ers persist in regulating gene expression even when 
located more than ± 1 Mb away from transcription start 
sites (TSS). Refining the identification of enhancer-gene 
pairs stands to gain significant advantages from technol-
ogies capable of assaying chromatin interactions, such as 
Hi-C and HiChIP. in addition, employing motif sequence 
scanning to infer TF binding and the incorporation of 
TAD constraints to predict downstream target genes, 

while grounded in fundamental biological principles, 
may also inadvertently introduce noise into the regula-
tory relationships within the network. Given the ongo-
ing efforts in producing various types of epigenetic data 
in a wide range of biological contexts, we anticipate that 
the integration of transcription factor ChIP-seq data and 
high-order chromatin structure Hi-C data will further 
optimize our network construction approach, leading to 
improved accuracy in identifying both upstream TF and 
downstream target genes of eRNAs.

Recent years have seen a surge of eRNA-related stud-
ies, which have identified eRNAs using high-depth RNA-
seq data [28–31, 90]. The low and unstable expression 
of eRNAs makes high-depth RNA-seq data critical for 
accurate eRNA identification. In our study, the library 
size of the RNA-seq data ranged from 38 to 50 million 
reads per sample, providing a higher depth of RNA-seq 
data for eRNA identification compared to the study of 
Carullo et  al. [30]. Furthermore, the RNA-seq samples 
displayed strong reproducibility (Fig. 1c), enabling us to 
accurately profile an eRNA expression atlas in pigs. The 
previous understanding of eRNAs was that they were 
transcribed in a bi-directional manner [91], However, 
subsequent studies have revealed that some eRNAs are 
transcribed in a unidirectional fashion [65, 66], which is 
supported by the results of our study, where we identified 
different transcriptional patterns of eRNA in tissues and 
discovered that they have different molecular character-
istics and are involved in different biological processes. 
Although deep learning classification models are used for 
sequence feature learning, the classification of unidirec-
tional and bidirectional transcribed enhancers remains 
a challenging endeavor. This ongoing difficulty suggests 
that the transcription direction of eRNAs may not be 
only determined by the linear sequence itself, but rather 
that it may be influenced by complex higher-order chro-
matin structural dynamics that extend beyond the scope 
of eRNA sequence analysis.

Transposable elements play a crucial role in shaping 
the evolution of cis-regulatory elements. An intriguing 
finding in our study is the significant and specific enrich-
ment of LTR families in TEn. However, it is worth not-
ing that the LTR/ERVK family did not exhibit significant 
enrichment, which is likely due to insufficient statistical 
power as a result of its small number of copies in the pig 
genome. Previous research has established the role of 
LTR transposons in driving the transcription of lncRNAs 
in the human and mouse genomes [92]. As a result, we 
propose that LTR transposons might also play a key role 
in the transcription of eRNA.

Over the years, there have been many studies on the 
genetic basis of pig production traits. For example, can-
didate SNP or genes that affect pig production traits have 
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been identified through GWAS [93–95], by differential 
gene expression analysis or co-expression network anal-
ysis using RNA-seq data from different pig breeds [96–
98], and by integrating epigenetic modifications [99, 100]. 
While these studies have undoubtedly offered valuable 
insights into the genetic mechanisms that underlie pork 
production traits, it is crucial to recognize that biological 
processes operate through intricate, multi-layered net-
works. Relying solely on the analysis of individual or lim-
ited omics data is inadequate to comprehensively unravel 
the complex genetic regulatory mechanisms that gov-
ern these traits. Aligned with this perspective, our study 
exemplifies an integrative approach that demonstrates 
the power of exploiting multi-omics data to dissect the 
genetic basis of pig economic traits.

The functional annotation of genomes has provided 
a solid foundation for the interpretation of regulatory 
mechanisms of genetic variations, particularly those 
in the non-coding regions [101, 102]. Previous studies 
have shown that tissue-specific cis-regulatory elements 
enriched for GWAS signals are associated with com-
plex phenotypes [72], highlighting the importance of 
this type of functional annotation in understanding the 
genetic basis of phenotypic variations. Here, by compar-
ing eRNA annotation with pig GWAS and QTL data, our 
results suggest the pivotal role of tissue-specific eRNAs 
in shaping economic traits in pigs. Beyond pig complex 
traits, our study also demonstrated that pig muscle- and 
fat-specific eRNAs can effectively serve as surrogates to 
decipher the hereditary nature of human muscle- and 
fat-related phenotypes. This finding further strengthens 
the utilization of pigs as models for medical research 
in humans. This is reminiscent of using orthologous-
based mouse-derived human open chromatin profiles 
for understanding the genetic basis of human diseases 
or phenotypes [37]. Notably, compared to other model 
species, pigs are generally regarded as anatomically and 
developmentally more similar to humans, enhancing 
their relevance as model organisms.

While our systematic study on pig tissue eRNAs pro-
vides a valuable approach for understanding complex 
traits in pigs, it still has certain limitations. For instance, 
in the identification of eRNAs, we followed the method-
ology outlined by Carullo et  al. [30], excluding known 
coding gene and non-coding RNA regions based on 
the reference genome annotation to prevent interfer-
ence with enhancer transcription signals. In spite of our 
efforts to leverage annotated genomic files from different 
databases (RefSeq, UCSC, and Ensembl) for the pig ref-
erence genome, the possibility of incomplete annotation 
remains. Unannotated genes or transcription elements in 
the pig reference genome are an inevitable objective real-
ity. In addition, when our aim was to screen for eRNAs 

associated with GWAS hits linked to specific traits, we 
referred to methodologies applied in previous studies 
[103, 104], using a 20-kb window to consider the effect 
of LD of SNPs instead of directly computing LD values 
between SNPs. However, we recognize that under condi-
tions where direct LD calculations are feasible for the pig 
population, selecting trait-associated SNPs within eRNAs 
could yield more precise results. Furthermore, although 
our study provides the first pig tissue-level eRNA expres-
sion atlas and offers a framework for constructing eGRN 
to dissect meat-related traits in pigs, there is room for 
optimization. Our focus was on 2-week-old pigs from 
eastern and western breeds, which overlooked the tem-
poral specificity of eRNA expression at various devel-
opmental stages. Future integration of complementary 
transcriptomic and H3K27ac data across additional 
developmental time points will enhance the utility of 
eGRN in unraveling the genetic mechanisms for meat-
related traits in pigs.

Conclusions
In summary, our work not only identified critical eRNAs 
and their target genes that might contribute to the 
genetic basis of pork production traits, but also proposed 
a novel strategy to construct eRNA-centered GRN that 
pinpoint potential trait-affecting genes. This strategy 
is broadly applicable for uncovering how genetic com-
ponents in cis-regulatory elements, such as enhancers, 
might shape phenotypic diversity in various organisms.
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