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Abstract 

Background  Metabolic disturbances adversely impact productive and reproductive performance of dairy cattle due 
to changes in endocrine status and immune function, which increase the risk of disease. This may occur in the post-
partum phase, but also throughout lactation, with sub-clinical symptoms. Recently, increased attention has been 
directed towards improved health and resilience in dairy cattle, and genomic selection (GS) could be a helpful tool 
for selecting animals that are more resilient to metabolic disturbances throughout lactation. Hence, we evaluated 
the genomic prediction of serum biomarkers levels for metabolic distress in 1353 Holsteins genotyped with the 100K 
single nucleotide polymorphism (SNP) chip assay. The GS was evaluated using parametric models best linear unbi-
ased prediction (GBLUP), Bayesian B (BayesB), elastic net (ENET), and nonparametric models, gradient boosting 
machine (GBM) and stacking ensemble (Stack), which combines ENET and GBM approaches.

Results  The results show that the Stack approach outperformed other methods with a relative difference (RD), 
calculated as an increment in prediction accuracy, of approximately 18.0% compared to GBLUP, 12.6% compared 
to BayesB, 8.7% compared to ENET, and 4.4% compared to GBM. The highest RD in prediction accuracy between other 
models with respect to GBLUP was observed for haptoglobin (hapto) from 17.7% for BayesB to 41.2% for Stack; for Zn 
from 9.8% (BayesB) to 29.3% (Stack); for ceruloplasmin (CuCp) from 9.3% (BayesB) to 27.9% (Stack); for ferric reduc-
ing antioxidant power (FRAP) from 8.0% (BayesB) to 40.0% (Stack); and for total protein (PROTt) from 5.7% (BayesB) 
to 22.9% (Stack). Using a subset of top SNPs (1.5k) selected from the GBM approach improved the accuracy for GBLUP 
from 1.8 to 76.5%. However, for the other models reductions in prediction accuracy of 4.8% for ENET (average of 10 
traits), 5.9% for GBM (average of 21 traits), and 6.6% for Stack (average of 16 traits) were observed.

Conclusions  Our results indicate that the Stack approach was more accurate in predicting metabolic disturbances 
than GBLUP, BayesB, ENET, and GBM and seemed to be competitive for predicting complex phenotypes with various 
degrees of mode of inheritance, i.e. additive and non-additive effects. Selecting markers based on GBM improved 
accuracy of GBLUP.
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Background
Dairy cows may experience stressful periods during 
lactation, which are mainly caused by the high energy 
demands required for milk production [1, 2]. During 
this period, changes in metabolic and endocrine status 
occur, which can lead to increased lipolysis and proteoly-
sis in support of a high milk yield [3, 4]. When metabolic 
stress occurs in lactating dairy cows, it triggers increased 
levels of haptoglobin, non-esterified fatty acids (NEFA), 
β-hydroxybutyrate acid (BHBA), ceruloplasmin (CuCp), 
and globulins in their serum and decreased levels of 
paraoxonase (PON), glucose, and albumin [5]. In this 
context, increased attention has been directed towards 
mitigating the harmful effects of metabolic imbalances, 
such as alterations in energy, immune, and hormonal 
states, with the aim of improving health and resilience of 
dairy cows [6].

Metabolic stress disturbances, such as ketosis, milk 
fever, and metabolic energy imbalances, are directly 
related to changes in the levels of NEFA, BHBA, and glu-
cose and increase the chance of harmful effects on animal 
health and welfare, thus affecting farm profitability [7]. 
Assessing subclinical metabolic disorders through blood 
metabolite analyses can help to differentiate between 
cows that are prone to developing metabolic disorders 
and resilient cows. Studies of metabolic health disorders 
in dairy cattle that aim at selecting resilient animals and 
investigating responses to stressors have been recently 
performed [8]. Several biomarkers have been proposed 
for the detection of metabolic imbalance, such as metab-
olites associated with oxidative stress (reactive oxygen 
metabolites and species), energy balance (BHB, glucose, 
and NEFA), mineral status (calcium [Ca], sodium [Na], 
and magnesium [Mg]), liver function status (aspartate 
aminotransferase [AST], γ-glutamyl transferase [GGT], 
urea and albumin), and innate immunity and inflamma-
tion status (globulins, haptoglobin [hapto], myeloperoxi-
dase, and ceruloplasmin [CuCp]) [9–11].

Traditionally, the effects of metabolic disorders have 
been mainly evaluated in the most critical phase of the 
lactation period, i.e. early lactation [12, 13]. However, 
recent studies have highlighted that changes in the 
immune and metabolic aspects of dairy cattle can occur 
in late lactation and in the dry-off period with subclini-
cal forms, which can have, in turn, long-term effects on 
the subsequent lactation [14, 15]. In this view, serum 
biomarkers of inflammation, oxidative stress or hepatic 
overload could unveil crucial information on the health 
status of the cows throughout the lactation period, and 
deepen the knowledge on the complex mechanisms lead-
ing to post-partum metabolic imbalances. This knowl-
edge of the critical levels for blood metabolites can help 
establish efficient nutrition and management strategies 

for preventive control of metabolic distress. Although 
these practices do not guarantee the complete prevention 
of clinical or subclinical metabolic disorders, genetic/
genomic selection may represent a complementary 
approach to increase resilience in dairy cattle herds.

Exploring genetic markers (i.e., single nucleotide 
polymorphisms—SNPs) in genomic prediction (GP) 
approaches as predictors of complex phenotypes for 
breeding purposes is of interest. SNP-based approaches 
can help elucidate the genetic background of traits and 
enhance prediction over what is possible with pedigree-
based approaches (i.e., best linear unbiased prediction—
BLUP) [16]. Most GP approaches assume that observed 
phenotypes come from the action of several loci with 
additive effects distributed across the whole genome and 
produce shrinkage of estimated effect sizes, often lead-
ing to better predictive performance [17]. However, the 
inheritance of blood metabolites ranges from simple to 
complex, i.e., from a few to many underlying quantita-
tive trait loci (QTL) [10, 11, 18]. In addition, non-addi-
tive effects (dominance or epistasis) could affect blood 
metabolites, thus the statistical approaches that capture 
non-additive inheritance might contribute to improve 
GP accuracy [19, 20]. The optimal direction of selection 
for most blood metabolic stress biomarkers is still under 
discussion. Indeed, many metabolites have level thresh-
olds, which can allow the identification of cows at risk of 
compromising performance and health. Although these 
thresholds are not yet well-defined, several studies are 
being conducted to establish these subclinical thresholds 
[21, 22]. Moreover, animals with suboptimal or critical 
values can be found at both the extremes of the metab-
olite distribution (e.g., urea and total proteins), which 
complicates selective breeding programs.

In recent years, various machine learning (ML) meth-
ods have been employed for GP, providing opportuni-
ties to accommodate complex genetic architectures 
more efficiently than parametric models using less rigid 
assumptions [23–25]. Several studies have noted that 
ML, such as random forest (RF), support vector regres-
sion (SVR), gradient boosting machine (GBM), artificial 
neural networks (ANN), and stacking ensemble learning, 
can be used for GP, and outperform parametric mod-
els (i.e., GBLUP and Bayesian regression) in  situations 
where the reference population is small [26–29]. On the 
one hand, ML techniques have also been explored as a 
potential strategy for variable selection and then used 
in genomic BLUP (GBLUP) [30, 31]. On the other hand, 
Azodi et  al. [32], with data on plants, and Bellot et  al. 
[33], with human data, found that some ML models (e.g., 
deep neural networks) had a lower stability (i.e., show 
variation in prediction accuracy when trained on differ-
ent validation designs or populations) than linear models. 
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To date, information on the application of GP approaches 
for predicting blood metabolites in dairy cows is scarce. 
Hence, this study was carried out to compare the pre-
dictive ability of GBLUP against Bayesian (BayesB), two 
machine learning approaches (GBM and stacking ensem-
ble learning), and penalized regression via the elastic net 
in dairy cattle. The target phenotypes were blood metab-
olites related to energy, liver function and hepatic dam-
age, oxidative stress, inflammation and innate immunity, 
and minerals.

Methods
Field data
The dataset comes from the BENELAT project, which 
aims at creating strategies and approaches to mitigate 
stressful factors to improve animal welfare and milk com-
ponents in dairy cattle production systems [34]. Cows 
were fed twice daily with a ration based on corn silage 
and sorghum, and energy-protein supplementation was 
formulated following the nutritional recommendations 
for dairy cattle [35]. Blood samples were obtained from 
1367 Holstein cows belonging to five herds in northern 
Italy (Emilia-Romagna and Veneto region) under a sim-
ilar dairy production system. Cows were subjected to a 
health examination before blood sampling, and animals 
with clinical diseases or receiving medical treatment were 
excluded from the study. The animal handling procedure 
used followed the ARRIVE (Animal Research: Reporting 
of In Vivo Experiments) guidelines and was approved by 
the ethical committee Organismo Preposto al Benessere 
degli Animali (OPBA; Organization for Animal Welfare) 
of the Università Cattolica del Sacro Cuore (Piacenza, 
Italy) and by the Italian Ministry of Health (protocol 
number 510/2019-PR of 19/07/2019).

Blood sampling
Blood samples were collected in 21 batches (i.e., herd/
date combinations): 16 batches in 2019 (1013 cows) 
and five batches in 2020 (354 cows). The average values 
(± standard deviation (SD)) were 33.38 ± 9.11 for daily 
milk yield (kg), 3.71 ± 0.88 for fat (%), and 3.43 ± 0.36 for 
protein (%). The cows had an average for days in milk 
(DIM) of 191.32 ± 110.30 and an average number of pari-
ties of 2.09 ± 1.25. Five mL of blood from each cow were 
collected after the morning milking and before feeding 
through jugular venipuncture using vacutainer tubes 
containing 150 USP units of lithium heparin as anti-
coagulant (Vacumed; FL Medical, Torreglia, Padua, 
Italy). All blood samples were maintained on ice until 
two hours after blood sampling, followed by centrifuga-
tion at 3500 × g for 1 min at 6 °C (Hettich Universal 16R 
Centrifuge), and then the plasma samples obtained were 

collected and stored at – 20 °C until assessment of blood 
metabolites.

Genomic data
In total, 1365 Holstein cows were genotyped with the 
Geneseek Genomic Profiler (GGP) Bovine 100  k SNP 
Chip assay. After removing the non-autosomal regions, 
we carried out genotype quality control. Autosomal SNPs 
with a minor allele frequency (MAF) lower than 0.05 and 
a significant deviation from Hardy–Weinberg equilib-
rium (P ≤ 10−5) were removed, as well as SNPs and sam-
ples with call rate lower than 0.95. After quality control, 
1353 cows with phenotypic information and genotyped 
with 61,226 SNPs remained for genomic analyses. Prin-
cipal component analysis (PCA) was used to assess popu-
lation substructure based on the SNPs using the ade4 R 
package [36], and two distinct groups were clustered 
using k-means clustering (see Additional file 1: Fig. S1).

Blood metabolic profile
In total, 28 blood metabolites were analyzed using a clini-
cal autoanalyzer (ILAB 650, Instrumentation Labora-
tory, Lexington, MA) following the method reported by 
Calamari et al. [37] and Hanasand et al. [38]. A complete 
metabolic profile that includes energy-related metabo-
lites (glucose, cholesterol, NEFA, BHB, urea, and creati-
nine), liver function/hepatic damage (AST, GGT, total 
bilirubin [BILt], albumin, alkaline phosphatase [ALP], 
and paraoxonase [PON]), oxidative stress (total reactive 
oxygen metabolites [ROMt]; advanced oxidation pro-
tein products [AOPP]; ferric reducing antioxidant power 
[FRAP]; thiol groups [SHp]), inflammation/innate immu-
nity (CuCp, total proteins [PROTt], globulins, hapto, and 
myeloperoxidase), and minerals (Ca, P, Mg, Na, K, Cl and 
Zn). Glucose, total proteins, albumin, hapto, urea, Ca, 
AST, and GGT were determined using kits purchased 
from Instrumentation Laboratory (IL Test). Globulin 
concentration was estimated as the difference between 
total proteins and albumin. The potassium electrolyte 
(K+) was assessed using the potentiometer method (ion-
selective electrode coupled to ILAB 600). Zn, NEFA, 
BHB, and CuCp were analyzed using the methods 
reported by Calamari et  al. [37]. The concentrations of 
AOPP, ROMt, FRAP, and PON were determined accord-
ing to Premi et al. [39]. Descriptive statistics for the blood 
metabolites and the density plot for each blood metab-
olite are shown in Additional file 2: Table S1 and Addi-
tional file 1: Figs. S2, S3 and S4.

Genetic parameters
Genetic variance components and heritability estimates 
for blood metabolites were obtained with the following 
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single-trait animal model via the Bayesian approach 
with Gibbs sampling:

 where y is a vector of blood metabolite values; b is 
the vector of fixed effects of days in milk with six lev-
els (levels 1: less than 60  days; 2: 60–120  days; 3: 121–
180 days; 4: 181–240 days; 5: 241–300 days and 6: more 
than 300 days) and parity in four classes (1, 2, 3, and ≥ 4 
parities), with the two first principal components that 
explained 12.3% of the genotypic variability considered as 
covariables. Furthermore, h is the vector of the random 
effects of batch; a is the vector of additive genetic effects; 
X , W , and Z are incidence matrices relating y to fixed 
effects ( b ), batch effects ( h ), and the additive genomic 
breeding value ( a ), respectively; and e is the vector of 
random residual effects.

The model was fitted under the following assumptions 
for random effects: a ∼ N(0,Gσ2a) , h ∼ N(0, Iσ2batch) and 
e ∼ N(0, Iσ2e) , where σ2a , σ2batch , and σ2e are variances for 
additive, batch and residual effects, respectively; I is an 
identity matrix; and G was obtained according to Van-
Raden [16]: G = MM

′

2
∑m

j=1 pj

(
1−pj

) where M is the SNP matrix 

with codes 0, 1, and 2 for genotypes AA, AB, and BB, 
adjusted for allele frequency, and pj is the frequency of the 
second allele of the j-th SNP. All random effects were 
assumed to be mutually independent. We assigned a flat 
prior distribution to the fixed effects and a scaled inverse 
chi-square distribution as prior for the random effects. 
Heritability ( h2 ) was estimated from the posterior variance 
components for each trait as h2 = σ2a/(σ

2
a + σ2batch + σ2e) , 

and h2batch = σ2batch/(σ
2
a + σ2batch + σ2e) was the relative 

contribution of the batch to the variance.
The model was implemented using the 

gibbsf90 + software from the blupf90 suite [40]. The 
Gibbs sampler comprised a chain of 500,000 cycles, 
with a burn-in of the first 50,000 iterations and samples 
stored every ten cycles. Hence, the posterior means of 
genetic parameters were estimated from 45,000 sam-
ples. Convergence was evaluated through visual inspec-
tion of the trace plot using the BOA package in R [41], 
and all traits converged (p-value > 0.10) according to 
the Geweke test [42].

The PREDICTf90 software [40] was used to obtain 
the phenotypes adjusted for the fixed and batch 
effects ( y∗ = y − Xb̂−Wĥ ), and the adjusted pheno-
types were used as the response variables in genomic 
predictions.

A model considering dominance and additive-by-addi-
tive epistatic effects was fitted to assess the dominance 
and epistatic genetic contribution for blood metabolic 
profiles as well, using the following model:

y = Xb+Wh + Za + e,
 where d is a vector of dominance genomic effects, epaa is 
a vector of random additive-by-additive genomic effects, 
the dominance matrix ( D ) was computed according to 
Vitezica et  al. [43] and the additive-by-additive matrix 
( GG ) was computed using Hadamard products, following 
the assumptions d ∼ N

(
0,Dσ 2

d

)
 and 

epaa ∼ N
(
0,GGσ2epaa

)
 where σ2d and σ2epaa are the domi-

nance and epistasis variance, respectively. Dominance 
( d2 ) and additive-by-additive epistasis ( ep2aa) contribu-
tions were estimated as the proportion of phenotypic 
variance as d2 = σ2d/(σ

2
a + σ2d + σ2epaa

+ σ2e) and 
ep2aa = σ2epaa

/(σ2a + σ2d + σ2epaa
+ σ2e) . The model was 

implemented using the R package BGLR version 1.09 
[44], considering a Gibbs chain of 500,000 cycles, with a 
burn-in of the first 50,000 iterations and samples stored 
every ten cycles. Convergence was evaluated through vis-
ual inspection of the trace plot using the BOA package in 
R [41], and all traits converged (p-value > 0.15) according 
to the Geweke test [42].

Cross‑validation scenarios
A tenfold cross-validation (CV) scheme was used for 
estimating the prediction accuracies of the parametric 
and nonparametric approaches. First, we split the data-
set into ten non-overlapping folds of approximately equal 
size (135 or 136 cows per fold) based on the genomic 
distance to reduce the dependence between training and 
validation sets (see Additional file 1: Fig. S1a). Thus, nine 
folds were assigned to train the models and one to vali-
date the model. Then, this CV procedure was repeated 
ten times, predicting each validation set once. In addi-
tion, a batch-out CV scenario was performed, where the 
data were randomly split considering 80% of batches (i.e. 
16 batches) assigned as training set and 20% of batches 
(i.e. 5 batches) assigned as validation set. Then, this CV 
scenario was repeated five times, predicting each valida-
tion set once.

Genomic prediction (GP) analyses
Parametric methods
GBLUP. Genomic prediction of blood metabolites used 
in the single-trait model:

 where y∗ is the vector of adjusted phenotypic values for 
blood metabolite-related traits, 1 is a vector of ones, µ 
is the unknown average value, Z is the incidence matrix 
for genomic estimated breeding values (GEBV); g is a 
vector of random genomic values, assumed to follow a 

y = Xb+Wh + Za + Zd + Zepaa + e,

y∗ = 1µ+ Zg + e,
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normal distribution given by N(0,Gσ2g ), where σ2g is the 
genomic variance and G is the additive genomic relation-
ship matrix. The vector of the residual effects ( e ) was dis-
tributed as N(0, Iσ2e ), where I is an identity matrix and σ2e  
is the residual variance. The GBLUP analyses were per-
formed using the BLUPF90 program [40].

BayesB. BayesB uses a linear model with a prior on 
marker effects that permits variable selection [45]. In the 
BayesB method, it is assumed that a known portion of 
the SNPs do not contribute to the genetic variation of the 
trait, via a mixture prior distribution, where a subset of 
the SNPs has a null effect (i.e., a point mass at zero) with 
probability π or an effect that follows a univariate t-distri-
bution with probability 1–π [17, 45]. The BayesB model 
for the ith individual was y∗i = µ+

∑p
w=1 xiwuw + ei , 

where y∗i  is the adjusted phenotype, µ is the unknown 
average; xiw is the SNP w (coded as 0, 1, and 2) in animal 
i ; uw is the (additive) effect of SNP w (p = 61,226); and ei 
is a residual effect assumed to be normally distributed as 
e ∼ N (0, Iσ2e ). A priori, the distribution of uw is:

 where π is the known prior probability of the SNP having 
a null effect, 1− π is the probability of the SNP having 
a non-null effect, and t(uw|df, SB) is a scaled t distribu-
tion with 5 degrees of freedom ( df  ) and scale parameter 
SB [44]. BayesB was implemented using the R package 
BGLR version 1.09 [44]. The analyses used a Gibbs chain 
of 200,000 iterations, with the first 50,000 iterations dis-
carded as burn-in and a sampling interval of 10 cycles.

Elastic net (ENET). The elastic net is a penalized 
regression that combines two regularization terms: 
l1 =

∑
|βj| (least absolute shrinkage and selection opera-

tor – LASSO) and l2 =
∑

β2j  (RR) (ridge regression – RR) 
[46]. The terms l1 and l2 in ENET are controlled by an 
alpha parameter (α), providing balance between selection 
(LASSO) and shrinkage (RR) of the predictor variables 
(SNPs). ENET is considered a robust approach when 
predictor variables have a strong collinearity. The regres-
sion model remains the same as previously described, 
and optimum weight values for � and α in the ENET are 
entered into the loss function as follows:

 where N is the number of animals, α has a value between 
0 (RR penalty) and 1 (LASSO penalty), and � is an over-
all regularization parameter that controls the variable 
shrinkage. A random grid search was performed to find 

p(uw|df,π, SB) = π ∗ (uw = 0)+ (1− π) ∗ t(uw|df, SB),

L(�,α, β) = min

[
1

2N

∑N

i=1
{yi − (β0 +

∑p

w=1
xiwβw)}

2 + �((1− α)β2w + α
∑

|βw|)

]
,

optimal values of α and � ranging from 0.0 to 1.0 with an 
interval of 0.1 for each parameter. We implemented the 
ENET model using the h2o R package (https://​github.​
com/​h2oai/​h2o-3). The search for α and � was performed 
using the h2o.grid function with a cross-validation that 
splits the training subset into five folds for training and 
testing. Finally, the trained model with the highest accu-
racy and lowest mean square error (MSE) was applied to 
a disjoint validation set.

Nonparametric methods
Gradient boosting machine (GBM)
GBM is an ensemble learning technique that combines 
gradient-based optimization and boosting techniques 
with regression tree models. A loss function is mini-
mized during the training process, applying an itera-
tive process of ensemble weak tree learners to obtain 
a robust predictive model [47]. GBM performs auto-
matic variable selection, by prioritizing the variables 
that contribute more to trait variability and discarding 
those that contain irrelevant or redundant informa-
tion. GBM starts by fitting a weak model based on the 
distribution of the response variable; subsequently, the 
algorithm fits models based on residual values of the 
previous model. Each new model aims to reduce the 
prediction error from the previous model; then, the 
algorithm stops when no further improvements in the 
loss function are achieved.

The GBM model can be described as 
y∗i = µ+

∑p
w=1 ϕhm(y

∗
i ; x)+ ei , where y∗i  is the adjusted 

phenotype; µ is an overall average; hm(y∗i ; x) represents 
the m-th model built to predict the target information; ϕ 
is the weight parameter applied to the m-th model; x is 
the genotype vector for the i-th animal at locus w (coded 
as 0, 1, and 2), and p = 61,222; and ei is the residual effect. 
We explored a random search for hyperparameters for 
GBM as follows: the number of trees (Ntree) was 100, 
200, 300, 500, 750, 1000, 1250, 1500, 2000, 2500 and 
3000; learning rate (ln_rate) ranged from 0.01 to 1 with 
intervals of 0.05; maximum tree depth (max_depth) 
ranged from 0 to 50 with intervals of 5; and the minimum 
number of observations per leaf (node_size) ranged from 
5 to 50 with intervals of 15.

Stacking ensemble
The stacking ensemble is a meta-learning algorithm that 
is used to make the best combination of predictions 

https://github.com/h2oai/h2o-3
https://github.com/h2oai/h2o-3
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from multiple previously trained ML models to fur-
ther enhance the accuracy of prediction [48, 49]. Stack-
ing ensemble prediction is performed in two steps: (1) 
obtaining output predictions from base learners that 
were previously trained using a random search (GBM and 
ENET), and (2) producing a final prediction using a gen-
eralized linear model (GLM) and a linear combination 
of weights (a1,…, an) as follows: fstacking =

∑n
i=1 wifi(x) , 

where fi(x) represents the phenotype predicted from 
each base learner, and wi is the weight vector learned in 
the meta-learner. The stacking ensemble was performed 
using the h2o.stackedEnsemble function of the h2o R 
package.

Model performances
Prediction accuracy of the different methods was 
assessed by the Pearson’s and Spearman’s correlation 
( r = cor(y∗i , ŷ

∗
i ) ) between phenotypes adjusted for fixed 

effects ( y∗i  ) and predicted adjusted phenotype ( ̂y∗i  ) of ani-
mal i . The predictive root mean squared error (RMSE) 
was RMSE =

√∑n
i=1(ŷ

∗
i − y∗i )

2/n , where n is the num-
ber of animals in the validation set. The slope of the lin-
ear regression of y∗ on ŷ∗i  was also used to assess 
prediction bias. The relative difference (RD) in prediction 
accuracy was measured as RD =

(rm1−rm2)
rm2

× 100 , where 
rm1 is the predictive ability using the other models and 
rm2 is the predictive ability using the GBLUP approach.

Feature reduction prediction
In order to evaluate the effectiveness of ML in reducing 
dimensionality and improving prediction accuracy, we 
preselected 1500 SNPs for GBM using a two-step strat-
egy. In the first step, we selected 1.5k SNPs that were 
labeled as most influential in the GBM analysis, using 
only the training set. In the second step, these selected 
SNPs were used in GBLUP, GBM, and Stack to train the 
model and make predictions in the validation set. This 
approach was applied separately, for each cross-valida-
tion fold, to ensure that marker selection was not based 
on information from the validation set. It should be 
noted that we did not include preselected SNPs to fit the 
BayesB model because it is a variable selection method. 
The feature importance score for GBM was determined 
by calculating the relative influence of improvements in 
predictive ability during the tree regression building pro-
cess expressed in a percentage scale [47], and SNPs were 
ranked by their importance score.

Results
Variance component estimates for blood metabolites
The genomic heritabilities (h2) estimated using GBLUP 
ranged from 0.06 to 0.36 for energy-related metabolites, 
from 0.11 to 0.35 for liver function and hepatic damage 
indicators, from 0.09 to 0.37 for oxidative stress metab-
olites, from 0.06 to 0.41 for inflammation and innate 
immunity indicators, and from 0.12 to 0.27 for blood min-
erals (see Additional file 2: Tables S2 and S3). The lowest 
heritability estimates were for hapto (0.06 ± 0.021), NEFA 
(0.06 ± 0.009), FRAP (0.09 ± 0.015), BILt (0.11 ± 0.051), 
Na (0.12 ± 0.0717), Ca (0.14 ± 0.046), K (0.16 ± 0.0424), 
globulins (0.17 ± 0.053), BHB (0.17 ± 0.036), myeloper-
oxidase (0.18 ± 0.060) and Mg (0.19 ± 0.0625). Moderate 
heritability estimates were observed across a spectrum of 
minerals (P, Cl, and Zn), ranging from 0.21 to 0.27, and 
energy-related metabolites (glucose, cholesterol, urea, 
and creatinine), ranging from 0.28 to 0.36. Similarly, the 
heritability estimates ranged from 0.23 to 0.35 for func-
tion and hepatic damage markers (AST, GGT, Albumin, 
ALP, and PON) they ranged, from 0.21 to 0.37 for oxida-
tive stress indicators (ROMt, AOPP, and SHp), and was 
equal to 0.21 ± 0.06 for PROTt. The highest heritability 
estimate, 0.41 ± 0.062, was found for CuCp.

Batch variances ( h2batch ) ranged from 0.05 to 0.49, with 
values higher than 30% of the total variation observed 
for FRAP, AOPP, BILt, K, hapto, creatinine, urea, ALP, 
myeloperoxidase, Zn, PON, and Na. The contribution of 
the epistatic variance to the phenotypic variance of blood 
metabolites ranged from 0.06 to 0.42 and was found to 
be greater than the contribution of dominance effects, 
which ranged from 0.06 to 0.17, except for AST, albumin, 
AOPP, magnesium, and potassium [see Additional file 1: 
Fig. S5 and Additional file 2: Table S4]. The largest con-
tribution from epistasis was observed for hapto, FRAP, 
ROMt, PON, cholesterol, Zn, Na, PROTt, and globulins.

Model performance
In our study, we compared the predictive ability based 
on model fit parameters for tenfold and batch-out CV 
scenarios (see Additional file 2: Tables S5 to S14). Com-
pared to the tenfold CV, the batch-out CV reduced the 
dependencies among training and validation sets, which 
decreased the predictive ability, on average, by 12% for 
the energy-related metabolites, 20% for liver function and 
hepatic damage, 15% for oxidative stress, 10% for inflam-
mation and innate immunity and 14% for minerals. After 
comparing different approaches, a similar pattern was 
observed between the tenfold CV and batch-out CV sce-
narios, for which the use of a stacking ensemble showed 
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better predictive ability. Thus, the tenfold CV was used 
for model comparisons.

For the comparison of prediction accuracies, we 
used GBLUP as the benchmark against other statistical 
approaches. The prediction accuracy from the tenfold CV 

Fig. 1  Prediction accuracy assessed by Pearson a and Spearman b correlations, including standard errors, obtained from genomic BLUP (GBLUP), 
BayesB, elastic net (ENET), gradient boosting machine (GBM), and stacking ensemble (Stack) for energy-related metabolites and liver function/
hepatic damage. For more details, see Additional file 2: Tables S5 and S6. NEFA non-esterified fatty acids, BHB β-hydroxybutyrate, AST aspartate 
aminotransferase, GGT​ γ-glutamyl transferase, BILt total bilirubin; ALP alkaline phosphatase and PON  paraoxonase

Fig. 2  Prediction accuracy assessed by Pearson a and Spearman b correlations, including standard errors, obtained from genomic BLUP (GBLUP), 
BayesB, elastic net (ENET), gradient boosting machine (GBM), and stacking ensemble (Stack) for oxidative stress metabolites and inflammation/
innate immunity. For more details, see Additional file 2: Tables S7 and S8. ROMt total reactive oxygen metabolites, AOPP advanced oxidation protein 
products, FRAP ferric reducing antioxidant power, SHp thiolic groups, and PROT total proteins
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is shown in Figs. 1, 2, and 3. The prediction accuracy was 
positively correlated to the heritability of the trait for all 
approaches, with a higher association for ENT (R2 = 0.78), 
GBM (R2 = 0.79), and Stack (R2 = 0.80; Fig.  4). Prediction 
accuracies ranged from low (hapto, NEFA, and FRAP) to 
high (Cl, SHp, ALP, and AOPP). On average, predictions 
for liver function/hepatic damage traits (r = 0.48, rang-
ing from 0.32 to 0.63) and for oxidative stress metabolites 
(r = 0.46, ranging from 0.25 to 0.60) were more accurate 
than predictions for energy-related metabolites (r = 0.43, 
ranging from 0.22 to 0.58), minerals (r = 0.43, ranging from 
0.37 to 0.57), and inflammation/innate immunity indica-
tors (r = 0.38, ranging from 0.17 to 0.55); see Figs.  1a, 2a 
and 3a.

GBLUP had a lower prediction accuracy than BayesB, 
ENET, GBM, and Stack (Figs.  1a, 2a and 3a). The Stack 
approach performed better than GBLUP, with accuracies 
ranging from 0.27 to 0.58 for energy-related metabolites, 
from 0.24 to 0.55 for inflammation/innate immunity, 

from 0.37 to 0.63 for liver function/hepatic damage, 
0.35 to 0.60 for oxidative stress metabolites and 0.41 to 
0.57 for minerals (Figs. 1a, 2a and 3a). On the one hand, 
relative differences (RD) between GBLUP and BayesB 
were very small for creatinine (0.59%), BHB (1.14%), 
ALP (1.89%), AST (2.13%), GGT (2.17%), PON (2.24%) 
and glucose (2.30%; see Additional file  1: Fig. S6a). On 
the other hand, greater RD were observed for all meth-
ods, i.e. for hapto, ranging from 17.65% for BayesB to 
41.18% for Stack; Zn, ranging from 9.76% for BayesB to 
29.27% for Stack; CuCp, ranging from 9.30% for BayesB 
to 27.91% for Stack; FRAP, ranging from 8% for BayesB to 
40% for Stack; and PROTt, ranging from 5.7% for BayesB 
to 22.86% for Stack [see Additional file 1: Figs. S6a, S7a, 
and S8a]. Prediction accuracy of BayesB was similar to 
that of GBLUP (for cholesterol and NEFA) and of ENET 
(for albumin, AOPP, NEFA, P, and K), and ENT and GBM 
showed similar prediction accuracy for urea (Figs. 1a, 2a 
and 3a).

Fig. 3  Prediction accuracy assessed by Pearson (a) and Spearman (b) correlations, including standard errors, obtained from genomic BLUP (GBLUP), 
BayesB, elastic net (ENET), gradient boosting machine (GBM), and stacking ensemble (Stack) for blood mineral. For more details, see Additional file 2: 
Table S9
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Comparing alternative models to the GBLUP baseline 
model based on RD, ML approaches such as GBM and 
Stack increased the prediction accuracy as the non-
additive effect on the trait increased (Fig. 5). A stronger 
association between RD and non-additive effect was 
observed for Stack (R2 = 0.95), GBM (R2 = 0.88) and 
ENET (R2 = 0.86), even for traits that are polygenic, 
and a moderate association was observed for BayesB 
(R2 = 0.55). However, when the blood phenotypes 
exhibited greater non-additive gene action (see Addi-
tional file  1: Fig. S5), the parametric models BayesB 
and ENET achieved gains in prediction accuracy over 
GBLUP.

The Spearman’s correlation measures differences in 
rank order between adjusted and predicted values, with 
higher values for Stack (0.23–0.58) than for GBM (0.23–
0.54), ENET (0.18–0.52), BayesB (0.17–0.51) and GBLUP 
(0.14–0.51). Concerning RMSE, Stack had the best per-
formance for all traits, with a larger reduction in RMSE 
ranging from 11 to 35% for traits related to liver func-
tion/hepatic damage, oxidative stress, and minerals (see 
Additional file 2: Table S5, S6, S7, S8 and S9). ENET had 
a higher RMSE than GBLUP for glucose, cholesterol, 
and urea, although it had a better predictive ability (see 
Additional file 2: Table S5). The slope coefficients differed 
slightly from 1, so the predictions were empirically unbi-
ased for the GP methods evaluated (see Additional file 2: 

Fig. 4  Relationship between prediction accuracy obtained using tenfold cross-validation and heritability estimates for blood metabolites: GBLUP 
genomic best linear unbiased prediction (a); BayesB (b); ENET elastic net (c), GBM gradient boosting machine (d) and Stack Stacking ensemble 
combining predictions from EN and GBM (e)
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Fig. 5  Relationship between relative gain in prediction accuracy obtained using tenfold cross-validation and non-additive effect for blood 
metabolites assessed by Pearson’s correlation for the approaches BayesB, elastic net (EN), gradient boosting machine (GBM) and stacking ensemble 
(Stack) against genomic best linear unbiased prediction (GBLUP)

Fig. 6  Relative gain in prediction accuracy assessed by Pearson a and Spearman b correlations considering the top 1500 SNPs ranked by a GBM 
model against fitting all 61k SNPs, including standard errors, for the energy-related metabolites and liver function/hepatic damage traits using 
GBLUP, ENET, GBM, and stacking ensemble (Stack). NEFA non-esterified fatty acids, BHB β-hydroxybutyrate, AST aspartate aminotransferase, GGT​ 
γ-glutamyl transferase, BILt total bilirubin, ALP alkaline phosphatase, PON paraoxonase
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Tables S5, S6, S7, S8 and S9). However, using a hierarchi-
cal cluster, we observed that Stack, ENET, and GBLUP 
were similar to each other but different from GBM and 
BayesB (see Additional file 1: Fig. S9).

Impact of GBM feature selection on prediction accuracy
Figures  5, 6 and 7 show the relative gain in prediction 
accuracy obtained by GBLUP, ENET, GBM, and Stack, 
considering all SNPs (~ 61  K) against the model fitting 
only the 1500 SNPs selected as most relevant from the 
GBM approach. The relative gain had distinct patterns 
depending on blood metabolite and model. Using pre-
selected SNPs in the GBLUP method increased accuracy 
when it was assessed using Pearson’s correlation for all 
metabolites (Fig.  5a) while when it was assessed using 
Spearman’s correlation, only cholesterol showed a reduc-
tion of 2% (Fig. 5b).

Using preselected SNPs, the GBLUP approach had a 
relative gain, ranging from 2 to 76%, while ENET, GBM, 
and Stack showed a reduction in prediction accuracy for 
some blood metabolites (Figs.  5a, 6a, and 7a). GBLUP 
showed significant gains in prediction accuracy for hapto 
(76%), globulins (58%), and NEFA (32%), but such gains 
were also observed for the ENET (62%, 44%, and 30%), 
GBM (45%, 14%, and 20%), and Stack (38%, 26%, and 
22%) models. When fitting ENET with preselected SNPs 
as predictors, ENET showed a similar trend to that of 
GBLUP i.e. an increase in prediction accuracy, except for 

10 blood metabolites (PON, SHp, FRAP, Zn, CuCp, GGT, 
AST, Mg, P, and AOPP) for which prediction accuracy 
decreased. For the GBM approach, among the 28 blood 
metabolites evaluated, 21 exhibited a reduction in pre-
diction accuracy (Figs. 5a, 6a, and 7a), which ranged from 
14% (PON and Zn) to 2% (Mg, Ca, K, ROMt, P, Na, albu-
min, urea, GGT, and ALP), and the only exceptions were 
BILt and glucose, for which inclusion of relevant prese-
lected SNPs resulted in the same prediction accuracy as 
when all SNPs were used (Fig. 8).

Using Spearman’s correlation, GBLUP showed higher 
gains in prediction accuracy than ENET, GBM, and Stack 
when considering the subset of SNPs, except for choles-
terol, which showed a reduction of 2% (Figs. 5b, 6b and 
7b). Overall, although GBLUP achieved a greater gain in 
prediction accuracy when using the subset of SNPs com-
pared to all available SNPs, the Stack model remained the 
model with the highest prediction accuracy (see Addi-
tional file 2: Tables S15, S16, S17, S18 and S19).

Discussion
The data used in this work were from five herds, which 
differed in the health measures implemented, resulting in 
differences in the prevalence of metabolic disorders and 
clinical/subclinical mastitis. Although the trial did not 
include cows with clinical diseases, it did encompass cows 
with differing degrees of subclinical conditions, as deter-
mined by the proportion of individuals with deviating 

Fig. 7  Relative gain in prediction accuracy assessed by Pearson a and Spearman b correlations considering the top 1500 SNPs ranked by a GBM 
model against fitting all 61k SNPs, including standard errors, for oxidative stress metabolites and inflammation/innate immunity traits using GBLUP, 
ENET, GBM, and stacking ensemble (Stack). ROMt total reactive oxygen metabolites, AOPP advanced oxidation protein products, FRAP ferric reducing 
antioxidant power, SHp thiolic groups, CuCp ceruloplasmin, PROTt total proteins, Hapto haptoglobin, MPO myeloperoxidase
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values for blood traits such as hapto and urea (see Addi-
tional file  2: Table  S1). This phenomenon, frequently 
observed on dairy farms, was recently examined by Gian-
nuzzi et al. [50]. Their study demonstrated a strong connec-
tion between individual metabolic behavior and production 
performance, which indicated that this association is not 
confined to specific clinical diseases or the transition phase 
but extends throughout the entire lactation period.

Variance components for blood metabolites
Estimation of genetic parameters is fundamental for 
using the existing genetic variation to select high-
performing dairy cattle with a lower susceptibility to 
metabolic disorders. This study estimated heritability 
for energy-related serum metabolites, liver function/
hepatic damage, oxidative stress, inflammation/innate 
immunity, and minerals. Heritability estimates for some 
of these metabolites have previously been estimated in 
milk, but few studies have reported values for the serum 

matrix. On the one hand, compared to the estimates of 
heritability reported by Luke et  al. [10], those obtained 
in our study for serum metabolites were higher for BHB 
(0.09 ± 0.04), Ca (0.07 ± 0.04), and urea (0.18 ± 0.05), lower 
for albumin (0.27 ± 0.06) and globulin (0.46 ± 0.06) and 
similar for Mg (0.19 ± 0.06) and hapto with values close 
to zero. On the other hand, Benedet et al. [51] observed 
higher heritability estimates for blood infrared predicted 
metabolites such as BHBA, i.e. 0.21 ± 0.02 and NEFA, i.e. 
0.14 ± 0.02, while Mota et al. [20] observed a slight differ-
ence in heritability estimates for some serum metabolites.

The heritability estimates for serum minerals in this 
study were lower than those of Tsiamadis et al. [52]. Their 
study reported moderate to high heritabilities (0.20–0.43) 
for Ca, P, and Mg, while those for K were low to moder-
ate (0.12–0.23). It is worth mentioning that heritability 
estimates can differ depending on the population, man-
agement methods, and statistical model used. Further-
more, various environmental factors, including diet and 

Fig. 8  Relative gain in prediction accuracy assessed by Pearson (a) and Spearman (b) correlations considering the top 1500 SNPs ranked by a GBM 
model against fitting all 61k SNPs, including standard errors, for blood minerals using GBLUP, ENET, GBM, and stacking ensemble (Stack)
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interaction with other genetic and non-genetic factors, 
also play a role in the variance of blood metabolite lev-
els. In general, availability of the heritability estimates for 
blood metabolites in dairy cattle can offer useful insights 
into the genetic basis of metabolic health and production 
traits. This knowledge can drive breeding strategies to 
enhance these traits in dairy cattle populations.

Although additive effects play a major role in blood 
metabolites levels, non-additive effects should not be 
neglected. Our findings reveal significant contributions 
of non-additive variance captured by SNPs in determin-
ing blood metabolites. The dominance variance contrib-
uted a further 6 to 17% to the total phenotypic variance 
(see Additional file 1: Fig. S5). Moreover, our study found 
that from 6 to 42% of the phenotypic variance could be 
attributed to epistatic variation depending on the serum 
metabolite evaluated. To our knowledge, this is the first 
time that non-additive genetic variance components have 
been reported for serum metabolites in Holstein. Dif-
ferences in estimated additive genetic variance and her-
itability were found between models with and without 
non-additive effects. This may occur because the parti-
tion of non-additive effects, especially epistasis, can be 
translated into additive variance when allelic frequencies 
are low [53]. In addition, the additive variance captured 
from the similarities between relatives may also include 
a fraction of the variance generated by interaction effects 
[53]. This could partially explain the observed difference 
in additive variance between models.

Predictive performance of genomic prediction
Genomic prediction of complex traits has used mainly 
parametric methods. However, increased attention has 
recently been directed to nonlinear ML techniques. Few 
studies reported accuracies of GP for some of the metab-
olites evaluated in this study, such as BHBA, albumin, 
urea, globulin, Ca, and Mg [10, 11]. Overall, our results 
indicate low-to-medium predictive accuracies, ranging 
from 0.17 to 0.60 depending on the trait analyzed and 
statistical approach. These values are higher than those 
reported by Luke et  al. [10], which ranged from 0.09 to 
0.27, and similar to those reported by Cavani et al. [11] 
for Ca, which was 0.45. The performance of the evaluated 
methods seems to depend highly on the genetic architec-
ture of the traits measured by the heritability, even for 
ML approaches (Fig. 4). This may be due to non-additive 
gene action in the ML (GBM and Stack) approaches, such 
as epistasis, which can be converted into additive genetic 
variance when allelic frequencies are low for complex 
traits under directional selection, or to similarity between 
relatives, which can also contain a fraction of the vari-
ance generated by interaction effects [53].

The differences observed in prediction accuracy 
between models stem from assumptions about the effect 
of SNPs on the target trait, which directly affects the 
model’s ability to adapt to changes in phenotypic value 
(bias) and prediction variance (RMSE). This occurs when 
the assumptions of the prediction model are inappropri-
ate for a given trait, and thus they impair its predictive 
ability. The assumption in GBLUP (i.e., the SNP contri-
bution to trait variability is uniform across the whole 
genome) may not match the genetic architecture under-
lying the traits. Alternatively, BayesB, ENET, and GBM 
assign differential weights to SNPs, attempting to match 
their contributions to the variation of the target trait, 
whereas, Stack ensemble learning aims at improving 
prediction accuracy by combining heterogeneous base 
learners [49]. The Stack approach improved the predic-
tion accuracy from 7.7 to 41.2% over the base learning 
methods (GBM and ENET). In the Stack model, the GBM 
approach builds a nonlinear model, whereas ENET uses a 
penalized linear model where some regression coefficient 
estimates are set to zero, thus performing variable selec-
tion [46]. Several authors have observed that combining 
heterogeneous base learning algorithms can give better 
generalization and more accurate phenotypes [9, 54] and 
genomic predictions [29].

We found that BayesB (differential shrinkage) per-
formed better than GBLUP (homogeneous shrinkage). 
With a substantial superiority for blood metabolites, 
BayesB performed better than GBLUP, with an RD rang-
ing from 1.89 to 17.65%, except for glucose and cho-
lesterol for which the RD was only 0.59% and 1.14%, 
respectively. BayesB regression performs better for tar-
get traits with QTL with significant effects [55–57]. The 
results of genome-wide association studies have shown 
that several major chromosomal regions influence spe-
cific blood metabolites, leading to variability in their phe-
notypic expression. For instance, Nayeri et al. [58] found 
that most of the significant SNPs for milk BHB were 
located on Bos taurus (BTA) autosome 6, while Milan-
esi et al. [18] identified different BTA chromosomes with 
significant associations for CuCp (BTA1), GGT (BTA17), 
and PON (BTA4, 16, and 26). In addition, Cavani et  al. 
[11] found that the genomic region located on BTA6 
explained the largest percentage of additive genetic vari-
ance for blood Ca. Thus, considering GP approaches that 
weigh these regions differently can improve prediction 
accuracy.

The gain in prediction accuracy from ENET comes 
from the combination of two different types of penal-
ties to the predictor variables, thus reducing the overfit-
ting in the training population by controlling the degree 
of shrinkage and imposing more flexible penalties to 
predictors, and shrinking coefficients to zero or close 
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to zero [59]. Piles et al. [30] found that feature selection 
approaches improved prediction accuracy. Furthermore, 
Azodi et  al. [32] indicated that incorporating feature 
selection in ensemble methods increased accuracy com-
pared to models that did not allow variable selection.

GP involves the estimation of GEBV or adjusted phe-
notypes based on genetic markers with the aim of 
extracting pattern and similarity relationships between 
markers and the target information. In general, the tradi-
tional approaches (i.e., GBLUP and Bayesian regression) 
used in GP might not adequately capture the complex-
ity of the genetic architecture of traits (e.g., dominance 
and epistasis) [27, 30, 60, 61]. In this context, using the 
GBM approach, which does not assign prior knowledge 
about how genes affect traits, we observed a significant 
improvement in prediction accuracy over GBLUP. On 
average, prediction accuracy increased by 10.29% for 
energy-related metabolites, 9.48% for liver function and 
hepatic damage, 14.42% for oxidative stress metabolites, 
20.33% for inflammation and innate immunity indica-
tors, and 12.23% for minerals. These gains in predictive 
ability from GBM may be due to blood metabolites being 
affected by nonlinear relations (dominance and epistasis) 
between SNPs and phenotypes, which contribute to their 
variability (see Additional file 1: Fig. S5).

GBM is an attractive ensemble approach for handling 
a large number of predictors because it is a robust super-
vised learning algorithm that can learn complex nonlin-
ear relationships. Compared with GBLUP, BayesB, and 
ENET, GBM has flexibility in capturing complex genetic 
architectures with additive and epistatic effects. How-
ard et  al. [62] observed that when a trait is influenced 
by additive-by-additive epistasis, parametric approaches 
could not make accurate predictions even for traits with 
a high heritability, while nonparametric methods pro-
vided reasonably accurate predictions. Given that there 
are well-defined chromosomal regions that affect blood 
metabolites such as Ca [11], PON, GGT and CuCp [18] 
and BHBA [58, 63], statistical approaches that use differ-
ential shrinkage (ENET and BayesB) of SNP effects may 
have advantages over GBLUP.

GBM feature selection on prediction accuracy
Feature selection and ML learners have the power to deal 
with heterogeneous and large datasets, providing pre-
diction accuracies and detecting genomic regions that 
impact the relationships between genotype and pheno-
type [30, 31]. Efficient feature selection from GBM ena-
bles the preselection of SNPs with biological relevance 
to the target trait. Furthermore, GBM can provide high 
accuracy in genomic prediction when the number of 
SNPs is reduced [60]. However, the performance of GBM 
and Stack using preselected SNPs (1.5k) was lower than 

that obtained using all the SNPs (~ 61k) except for glu-
cose, NEFA, BHB, urea, albumin, globulins, Hapt, Ca, P, 
Mg, Na, k, and Cl. However, for GBLUP, we observed an 
increment in prediction accuracy for all blood metabo-
lites using the preselected SNPs, and this gain was more 
evident when Spearman’s correlation was used. Azodi 
et al. [32] observed that selecting SNPs using random for-
est improved prediction accuracies for artificial neural 
networks in the context of various plant species, but its 
prediction accuracy was lower than for the other models 
evaluated. Similarly, our findings show that while GBLUP 
produced gains in prediction accuracy, the Stack had the 
highest prediction accuracy.

Li et al. [60] used three regression tree-based ensemble 
learning methods (random forest, GBM, and extreme gra-
dient boosting) and observed that, when SNPs were pre-
selected from GBM, the accuracies of GBLUP for some 
traits were similar to those obtained when using all the 
SNPs. In addition, Piles et  al. [30] and Azodi et  al. [32] 
observed that combining feature selection approaches 
with parametric and nonparametric models increased 
prediction accuracy compared to models without vari-
able selection. In a study on the prediction of complex 
phenotypes in outbred mice, Perez et  al. [64] observed 
that selecting SNPs with GBM seemed advantageous 
to decrease the number of predictor variables and, in 
some cases, improved the accuracy of parametric mod-
els. Together with applying insights from our findings, 
preselecting informative SNPs from the GBM approach 
can be a dimension reduction strategy, even when GP is 
performed using a parametric model (GBLUP). Further 
research is required to extend this alternative from a uni-
variate to a multivariate approach for practical implemen-
tation in genomic selection breeding programs. In this 
study, when compared to the predictive performance of 
the models evaluated, the Stack approach delivered com-
petitive results for blood metabolites (Figs. 1, 2 and 3).

Conclusions
The Stack approach exhibited better performance for 
genomic prediction of complex blood metabolites in 
Holstein cattle, specifically for traits that are affected by 
non-additive effects (dominance and epistasis), where it 
outperformed parametric models (GBLUP, BayesB, and 
ENET). In this context, more research should be carried out 
to increase the knowledge of the biology of these indicators 
and consequently on the selection direction (i.e., selection 
for increasing or decreasing the values). Preselecting SNPs 
from GBM seems beneficial for extracting a number of 
informative SNPs and improving the prediction accuracy of 
GBLUP compared with ENET, GBM, and Stack. However, 
validation of these results using a larger cohort of animals 
and/or different breeds and herds is needed.
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Additional file 1: Figure S1. Principal component analysis based on 
SNPs (a) and genomic relationship matrix (b) for Holstein cows. Principal 
component analysis of animals based on the first two principal compo-
nents based on SNPs to evaluate the extent of the population structure 
(a) and genomic relationship matrix (b) in the Holstein cows. The colors 
represent the tenfold used in the cross-validation of genomic breeding 
values. Figure S2. Distribution of phenotypic values for energy-related 
metabolites: BHBA – β-hydroxybutyric acid; Cholest – cholesterol; CREA 
– creatinine; GLU – Glu – glucose; NEFA – non-esterified fatty acids and 
urea. Figure S3. Distribution of phenotypic values for liver function and 
hepatic damage, (a) and oxidative stress (b). Distribution of phenotypic 
values of blood metabolites related to liver function and hepatic dam-
age (a): ALB – albumin; ALP – alkaline phosphatase; AST – aspartate 
aminotransferase; BILt – total bilirubin; GGT – γ -glutamyl transferase; and 
PON – paraoxonase and oxidative stress (b): AOPP – advanced oxidation 
protein products; FRAP – ferric reducing antioxidant power; RMT – total 
reactive oxygen metabolites; SHp – thiol groups. Figure S4. Distribution 
of phenotypic values for inflammation/innate immunity response (a) 
and mineral (b). Distribution of phenotypic values for blood metabolites 
related to inflammation/innate immunity (a): Hapto – haptoglobin; 
CuCp – ceruloplasmin; GLOB – globulins; MPO – myeloperoxidase; PROTt 
– total protein and mineral (b): CA – calcium; CL – chlorine; K – potas-
sium; MG – magnesium; Na – sodium; P – phosphorus and Zn – zinc. 

Figure S5. Dominance ( d2 ), additive-by-additive epistasis ( ep2aa) , and 

dominance and epistasis ( epd2 ) contribution for blood metabolites 

variability. Dominance ( d2 ), additive-by-additive epistasis ( ep2aa) , and 

dominance and epistasis ( epd2 ) contribution for blood metabolites 

variability estimated as a proportion of total phenotypic variance 

considered as d2 = σ2d/(σ
2
a + σ2d + σ2epaa

+ σ2batch + σ2e) , 

ep2aa = σ2epaa
/(σ2a + σ2d + σ2epaa

+ σ2batch + σ2e) and 

epd2 = (σ2d + σ2epaa
)/(σ2a + σ2d + σ2epaa

+ σ2batch + σ2e) 

where σ2a , σ2d , σ2epaa
 and σ2e represents the additive genetic variance, 

dominance variance, additive-by-additive variance, and residual variance, 
respectively. Figure S6. Average of the relative difference (%) in predictive 
ability assessed by Pearson (a) and Spearman (b) correlations for statistical 
approaches against the genomic best linear unbiased prediction (GBLUP), 
for energy-related metabolites and liver function/hepatic damage blood 
metabolites in Holstein cows. Average of the relative difference (%) in 
predictive ability assessed by Pearson (a) and Spearman (b) correlations 
across 10-folds random cross-validation for the approaches BayesB, elastic 
net (EN), gradient boosting machine (GBM) and stacking ensemble 
(Stack) against the genomic best linear unbiased prediction (GBLUP), for 
energy-related metabolites and liver function/hepatic damage blood 
metabolites in Holstein cows. Data are shown as mean ± SD (black error 
bar line). NEFA—non-esterified fatty acids; BHBA—β-hydroxybutyric acid; 
AST—aspartate aminotransferase; GGT—γ-glutamyl transferase; BILt—
total bilirubin; ALP—alkaline phosphatase and PON – paraoxonase. Figure 
S7. Average of the relative difference (%) in predictive ability assessed 
by Pearson (a) and Spearman (b) correlations for statistical approaches 
against the genomic best linear unbiased prediction (GBLUP), for oxidative 
stress and inflammation/innate immunity response blood metabolites in 
Holstein cows Average of the relative difference (%) in predictive ability 
assessed by Pearson (a) and Spearman (b) correlations across tenfold 
random cross-validation for the approaches BayesB, elastic net (EN), 
gradient boosting machine (GBM) and stacking ensemble (Stack) against 
genomic best linear unbiased prediction (GBLUP), for blood metabolites 
in Holstein cows. Data are shown as mean ± SD (black error bar line). 
ROMt—total reactive oxygen metabolites; AOPP—advanced oxidation 
protein products; FRAP—ferric reducing antioxidant power; SHp—thiol 

groups; PROTt—total proteins. Figure S8. Average of the relative dif-
ference (%) in predictive ability assessed by Pearson (a) and Spearman 
(b) correlations for statistical approaches against the genomic best 
linear unbiased prediction (GBLUP), blood minerals in Holstein cows. 
Average of the relative difference (%) in predictive ability assessed by 
Pearson (A) and Spearman (B) correlations across tenfold random cross-
validation for the approaches BayesB, elastic net (EN), gradient boosting 
machine (GBM) and stacking ensemble (Stack) against genomic best 
linear unbiased prediction (GBLUP), for blood minerals in Holstein cows. 
Figure S9. Ward’s hierarchical clustering of models based on slope 
values for each model across all trait combinations.

Additional file 2: Table S1. Descriptive statistics for blood metabo-
lites related to energy, liver function/hepatic damage, oxidative stress, 
inflammation/innate immunity, and minerals (n = 1353). Table S2. 
Estimates of variance components, heritability ( h2 ), and batch 

incidence ( h2batch ) for blood metabolites related to energy-related 

metabolites, liver function/hepatic damage, and oxidative stress 

metabolites. Table S3. Estimates of variance components, heritability 

( h2 ), and batch incidence ( h2batch ) for blood metabolites related to 

inflammation/innate immunity and minerals. Table S4. Estimates of 

variance components considering non-additive effects, heritability 

( h2 ), batch incidence ( h2batch ), dominance ( d2 ), and additive-by-

additive epistasis ( ep2aa) , for blood metabolites. Table S5. Prediction 

metrics with standard errors, obtained from genomic BLUP (GBLUP), 
BayesB, elastic net (ENET), gradient boosting machine (GBM), and 
stacking ensemble (Stack) for energy-related metabolites for tenfold 
cross-validation. Table S6. Prediction metrics with standard errors, 
obtained from genomic BLUP (GBLUP), BayesB, elastic net (ENET), 
gradient boosting machine (GBM), and stacking ensemble (Stack) for 
liver function/hepatic damage for tenfold cross-validation. Table S7. 
Prediction metrics with standard errors, obtained from genomic BLUP 
(GBLUP), BayesB, elastic net (ENET), gradient boosting machine (GBM), 
and stacking ensemble (Stack) for oxidative stress metabolites for 
tenfold cross-validation. Table S8. Prediction metrics with standard 
errors, obtained from genomic BLUP (GBLUP), BayesB, elastic net (ENET), 
gradient boosting machine (GBM), and stacking ensemble (Stack) for 
inflammation/innate immunity for tenfold cross-validation. Table S9. 
Prediction metrics with standard errors, obtained from genomic 
BLUP (GBLUP), BayesB, elastic net (ENET), gradient boosting machine 
(GBM), and stacking ensemble (Stack) for blood minerals for tenfold 
cross-validation. Table S10. Prediction metrics with standard errors, 
obtained from genomic BLUP (GBLUP), BayesB, elastic net (ENET), 
gradient boosting machine (GBM), and stacking ensemble (Stack) for 
energy-related metabolites for batch-out cross-validation. Table S11. 
Prediction metrics with standard errors, obtained from genomic BLUP 
(GBLUP), BayesB, elastic net (ENET), gradient boosting machine (GBM), 
and stacking ensemble (Stack) for liver function/hepatic damage for 
batch-out cross-validation. Table S12. Prediction metrics with standard 
errors, obtained from genomic BLUP (GBLUP), BayesB, elastic net (ENET), 
gradient boosting machine (GBM), and stacking ensemble (Stack) for 
oxidative stress metabolites for batch-out cross-validation. Table S13. 
Prediction metrics with standard errors, obtained from genomic BLUP 
(GBLUP), BayesB, elastic net (ENET), gradient boosting machine (GBM), 
and stacking ensemble (Stack) for inflammation/innate immunity for 
batch-out cross-validation. Table S14. Prediction metrics with standard 
errors, obtained from genomic BLUP (GBLUP), BayesB, elastic net (ENET), 
gradient boosting machine (GBM), and stacking ensemble (Stack) for 
blood minerals for batch-out cross-validation. Table S15. Prediction 
fit parameters including standard errors, considering the top 1500 
SNP markers ranked by a GBM, obtained from genomic BLUP (GBLUP), 
Bayesian B (BayesB), elastic net (ENET), gradient boosting machine 
(GBM) and stacking ensemble (Stack) for energy-related metabolites. 
Table S16. Prediction fit parameters including standard errors, con-
sidering the top 1500 SNPs ranked by a GBM, obtained from genomic 
BLUP (GBLUP), Bayesian B (BayesB), elastic net (ENET), gradient boosting 
machine (GBM) and stacking ensemble (Stack) for liver function/
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hepatic damage. Table S17. Prediction fit parameters including standard 
errors, considering the top 1500 SNPs ranked by a GBM, obtained from 
genomic BLUP (GBLUP), Bayesian B (BayesB), elastic net (ENET), gradient 
boosting machine (GBM) and stacking ensemble (Stack) for oxidative 
stress metabolites. Table S18. Prediction fit parameters including standard 
errors, considering the top 1500 SNPs ranked by a GBM, obtained from 
genomic BLUP (GBLUP), Bayesian B (BayesB), elastic net (ENET), gradient 
boosting machine (GBM) and stacking ensemble (Stack) for inflammation/
innate immunity. Table S19. Prediction fit parameters including standard 
errors, considering the top 1500 SNPs ranked by a GBM, obtained from 
genomic BLUP (GBLUP), Bayesian B (BayesB), elastic net (ENET), gradient 
boosting machine (GBM) and stacking ensemble (Stack) for minerals in 
blood.
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