Skip to main content
  • II — Technologies de Conservation des Ressources Génétiques Animales et Végétales / Technologies of Conservation for Animal and Plant Genetic Resources
  • Open access
  • Published:

Numerical simulation for freezing and thawing mammalian spermatozoa. Evaluation of cell injuries at different depths in bags or straws during all steps

Simulation numérique de cryoconservation des spermatozoïdes de mammifères. Prédiction des atteintes cellulaires à différentes profondeurs de sacs ou de paillettes au cours de toutes les étapes de la technique

Abstract

A numerical simulation of freezing-thawing protocols applicable to mammalian spermatozoa is described and validated in the boar and the ram. Original aspects include: (1) the simulation of all steps of the technique from ejaculation to thawing, (2) the simulation of complex extenders really usable in field conditions and extender properties in non-ideal conditions, (3) the sequential extender changes within a protocol for simulation of dilutions, additions, etc. (4) the introduction of a new concept, the “molecular chicanes” which reconciles theoretical and experimental results, (5) the introduction of specific cell models and (6) the prediction of different cell injuries at various depths in flat and cylindrical plastic cryocontainers. The calculated data indicate when, where and why cells are affected during each step of the technique and can therefore help to increase the total number of living spermatozoa or to devise new techniques rapidly. For validation, calculated data are compared to experimental and literature results. In boars and rams, simulations and observations generally differ by less than 5%.

Résumé

Une simulation numérique de cryoconservation des spermatozoïdes de mammifères est décrite et validée chez le Bélier et le Verrat. Elle inclue des aspects originaux: (1) la simulation de toutes les étapes de la technique, de l’éjaculation au dégel, (2) la prise en compte des solutions non-idéales et de dilueurs complexes réellement utilisables sur le terrain, (3) la possibilité de les modifier en cours de simulation, pour mimer les dilutions successives, ajouts, etc., (4) l’introduction du nouveau concept de l” chicane moléculaire r” qui réconcilie résultats théoriques et pratiques, (5) la définition de modèles cellulaires spécifiques et (6) la prédiction des altérations cellulaires à différentes profondeurs dans les cryocontainers plats ou cylindriques. Les calculs indiquent quand, où et pourquoi les cellules sont altérées et peuvent de ce fait être utilisés pour améliorer le nombre total de spermatozoïdes vivants, ou évaluer rapidement une technique nouvelle. La validation s’appuie sur une comparaison entre résultats calculés et résultats expérimentaux ou publiés par d’autres auteurs. Chez le Verrat et le Bélier, simulations et viabilités réelles diffèrent généralement de moins de 5 %.

Abbreviations

c:

Solution specific heat (J/μg/K).

c i :

Concentration of the solute i (μg/mm3).

D i :

Diffusivity coefficient of the solute i(mm2/s).

Ea:

Activation energy (J/mol).

L:

Water heat of fusion (J/μg).

Lp:

Water conductivity (μm/s/kPa).

Mles, Mlis:

Molality of external and internal permeable solutes (mol/kg H2O).

Mlen, Mlis:

Molality of external and internal non-permeable solutes (mol/kg H2O).

m:

Mass of the solution (μg).

m i :

Mass of the solute i (μg).

m w :

Mass of water (μg).

N:

Avogadro’s number (mol-1).

P s :

Permeability of solute (μm/s).

r i :

Molecular radius of solute i (mm).

R:

Universal gas constant (J/mol/K).

S:

Exchange area (mm2).

Sc:

Cell area (μm2).

t:

Time (s).

T:

Temperature (K).

V(t):

Cell volume (μm3).

Vb:

Osmotically inactive cell volume (μm3).

V s :

Partial volume of solute s (L/mol).

x:

Co-ordinate (mm).

η:

Dynamic viscosity of the solution (μg/mm/s).

λ:

Thermal conductivity coefficient (W/mm/K).

σ:

Reflexion coefficient (without units).

References

  1. Boutron P., Comparison with the theory of the kinetics and extent of ice crystallization and the glass-forming tendency in aqueous cryoprotective solutions, Cryobiology 23 (1986) 88–102.

    Article  CAS  Google Scholar 

  2. Boutron P., Kaufmann A., Stability of the amorphous state in the system water-glycerol-dimethylsulfoxide, Cryobiology 15 (1978) 93–108.

    Article  CAS  Google Scholar 

  3. Bwanga C.O., De Braganga M.M., Einarson S., Rodriguez-Martinez H., Cryop-reservation of boar semen in mini- and maxi-straws, J. Vet. Med. A 37 (1990) 651–658.

    Article  CAS  Google Scholar 

  4. Bwanga C.O., Einarson S., Rodriguez-Martinez H., Cryopreservation of boar semen. II -Effect of cooling rate and duration of freezing point plateau on boar semen frozen in mini- and maxi-straws and plastic bags, Acta Vet. Scand. 32 (1991) 455–461.

    CAS  PubMed  Google Scholar 

  5. Colas G., Effect of initial freezing temperature, addition of glycerol and dilution on the survival and fertilizing ability of deep-frozen ram semen, J. Reprod. Fertil. 42 (1975) 277–285.

    Article  CAS  Google Scholar 

  6. Courtens J.L., Paquignon M., Ultrastructure of fresh, frozen, and frozen-thawed spermatozoa of the boar, in: Johnson L.A., Larsson K. (Eds.), Deep freezing of boar semen, Swedish University of Agriculture, Uppsala, 1985, pp. 61–87.

    Google Scholar 

  7. Courtens J.L., Ekwall H., Paquignon M., Plöen L., Preliminary study of water and some element contents in boar spermatozoa, before, during and after freezing, J. Reprod. Fertil. 87 (1989) 613–626.

    Article  CAS  Google Scholar 

  8. Courtens J.L., Paquignon M., Blaise F., Ekwall H., Plöen L., Nucleus of the boar spermatozoon: Structure and modifications in frozen, frozen-thawed, or sodium dodecyl sulfate-treated cell, Mol. Reprod. Dev. 1 (1989) 264–277.

    Article  CAS  Google Scholar 

  9. Courtens J.L., Theau-Clement M., Ultrastructural modifications of rabbit spermatozoa induced by two freezing and thawing techniques, In: Lebas F. (Ed.), Proceedings of the 6th World Rabbit Congress, Association Française de Cuni-culture, 63370 Lempdes, France, 1996, Vol. 2, pp. 59–63.

    Google Scholar 

  10. Cunningham F.E., Viscosity and functional ability of diluted egg yolk, J. Milk Food Technol. 35 (1972) 615–617.

    Article  Google Scholar 

  11. Curry M.R., Millar J.D., Watson P.F., Calculated optimal cooling rates for ram and human sperm cryopreservation fail to conform with empirical observations, Biol. Reprod. 51 (1994) 1014–1021.

    Article  CAS  Google Scholar 

  12. Curry M.R., Millar J.D., Watson P.F., The presence of water channel proteins in ram and human sperm membranes, J. Reprod. Fertil. 104 (1995) 297–303.

    Article  CAS  Google Scholar 

  13. Devireddy R.V., Swanlund D.J., Roberts K.P., Bischof J.V., Subzero water permeability parameters of mouse spermatozoa in the presence of extracellular ice and cryoprotective agents, Biol. Reprod. 61 (1999) 764–775.

    Article  CAS  Google Scholar 

  14. Ekwall H., Plöen L., Courtens J.L., Embedding resin space, water contents and chromatin compaction in rabbit sperm nuclei: Electron microscopic X-ray spectrophotometry of a brominated probe, Andrologia 27 (1995) 175–184.

    Article  CAS  Google Scholar 

  15. Ekwall H., Erikson B., Courtens J.L., Rodriguez-Martinez H., Assessment of ice content and morphological alterations in boar spermatozoa frozen in maxi-straws, in: 13th Int. Congress on Animal Reproduction, ICAR, Sydney, 1996, Abst.

    Google Scholar 

  16. Ekwall H., Eriksson B., Courtens J.L., Rodriguez-Martinez H., Ice granulome-try and cell damages in boar semen frozen in two types of containers, Infusion therapy and Transfusionsmedizin 245 (1997) 29.

    Google Scholar 

  17. Eriksson B., Ekwall H., Courtens J.L., Rodriguez-Martinez H., Effect of sodium dodecylsulphate on the frozen status and post-thaw viability of boar spermatozoa frozen in maxi-straws and plastic bags, in: 13th Int. Congress on Animal Reproduction, ICAR, Sydney, 1996, Abst.

    Google Scholar 

  18. Fahy G.M., Levy D.I., Ali S.E., Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions, Cryobiology 24 (1987) 196–213.

    Article  CAS  Google Scholar 

  19. Fullerton G.D., Keener C.R., Cameron I.L., Correction for solute/solvent interaction extends accurate freezing point depression theory to high concentration range, J. Biochem. Biophys. Methods 29 (1994) 217–235.

    Article  CAS  Google Scholar 

  20. Gao D.Y., Liu J., Mcgann L.E., Watson P.F., Kleinhans F.W., Mazur P., Critser E.S., Critser J.K., Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol, Hum. Reprod. 10 (1995) 1109–1122.

    Article  CAS  Google Scholar 

  21. Gao D.Y., Mazur P., Critser J.K., Fundamental cryobiology of mammalian spermatozoa, in: Karow A.M., Critser J.K. (Eds.), Reproductive tissue banking, scientific principles, Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto, 1997, pp. 278–328.

    Google Scholar 

  22. Gilmore J.A., McGann L.E., Liu J., Gao D.Y., Peter A.T., Kleinhans F.W., Critser J.K., Effect of cryoprotectant solutes on water permeability of human spermatozoa, Biol. Reprod. 53 (1995) 985–995.

    Article  CAS  Google Scholar 

  23. Gilmore J.A., Du J., Tao J., Peter A.T., Critser J.K., Osmotic properties of boar spermatozoa and their relevance to cryopreservation, J. Reprod. Fertil. 107 (1996) 87–95.

    Article  CAS  Google Scholar 

  24. Gilmore J.A., Liu J., Peter A.T., Critser J.K., Determination of plasma membrane characteristics of boar spermatozoa and their relevance to cryopreservation, Biol. Reprod. 58 (1998) 28–36.

    Article  CAS  Google Scholar 

  25. Handbook of Chemistry and Physics, 70th edition, in: Weast R.C., Lide D.R., Melvin J.A., Beyer W.H. (Eds.), CRC Press, Boca Raton, FL, USA, 1990.

  26. Hardy J.J., Steinberg M.P., Interaction between sodium chloride and paracasein as determined by water sorption, J. Food Sci. 49 (1984) 127–131.

    Article  Google Scholar 

  27. Hirsch C., Thomas algorithm for tridiagonal systems, in: Numerical Computation of Internal and External Flows, Willey & Sons, Chichester, 1988, Vol. 1, pp. 505–508.

    Google Scholar 

  28. Landau L.D., Lifshitz E.M., Fluid mechanics, in: Course of theoretical physics, Mir Publisher, Moscow, 1988, Vol. 6.

  29. Liu J., Wood E.J., Critser J.K., A theoretical approach to optimize interrupted-slow freezing protocol, in: Proceedings of the World Congress of Cryobiology, Marseille, France, 1999, Abst. 105.

    Google Scholar 

  30. Mazur P., Freezing of living cells: Mechanisms and implications, Am. J. Physiol. 247 (1984) 125–142.

    Article  Google Scholar 

  31. Mazur P., Basic concepts in freezing cells, in: Johnson L.A., Larsson K. (Eds.), Deep freezing of boar semen, Proceedings of the 1st Int. Conference on Deep freezing of Boar semen, Swedish University of Agricultural Sciences, Uppsala, 1985, pp. 91–111.

    Google Scholar 

  32. Miller D.P., de Pablo J.J., Corti H., Thermophysical properties of trehalose and its concentrated aqueous solutions, Pharmacol. Res. 14 (1997) 578–590.

    Article  CAS  Google Scholar 

  33. Nau F., La congélation, in: Thapon J.L., Bourgeois M.C. (Eds.), L’œuf et les ovoproduits, Collection Sciences et Techniques Agro-aliment aires, Techniques et Documentation, Lavoisier, Paris, 1994, pp. 157–161.

    Google Scholar 

  34. Palmer H.H., Ijichi K., Roff H., Redfern S., Sugared egg yolk: effects of pasteurization and freezing on performance and viscosity, Food Technol. 23 (1969) 85–108.

    Google Scholar 

  35. Pegg D.E., Simple equations for obtaining melting points and eutectic temperatures for the ternary system glycerol/sodium chloride/water, Cryo-Letters 4 (1983) 259–268.

    CAS  Google Scholar 

  36. Pegg D.E., Equations for obtaining melting points and eutectic temperatures for three ternary system dimethyl sulphoxide/sodium chloride/water, Cryo-Letters 7 (1986) 387–394.

    CAS  Google Scholar 

  37. Phelps M.J., Liu J., Benson J.D., Willoughby C.E., Gilmore J.A., Critser J.K., Effects of percoll separation, cryoprotective agents, and temperature on plasma membrane permeability characteristics of murine spermatozoa and their relevance to cryopreservation, Biol. Reprod. 61 (1999) 1031–1041.

    Article  CAS  Google Scholar 

  38. Reger J.F., Escaig F., Pochon-Masson J., Fitzgerald M.E.C., Observation on crab, Carduus maenas, spermatozoa following rapid freeze and conventional freezing technique, J. Ultrastruct. Res. 89 (1984) 12–22.

    Article  Google Scholar 

  39. Scalzo A.M., Dickerson R.W., Peeler J.T., Read R.B., The viscosity of egg and egg products, Food Technol. 24 (1970) 113–119.

    Google Scholar 

  40. Schneider U., Mazur P., Osmotic consequences of cryoprotectant permeability and its relation to the survival of frozen-thawed embryos, Theriogenology 21 (1984) 68–79.

    Article  CAS  Google Scholar 

  41. Songasen N., Leibo S.P., Cryopreservation of mouse spermatozoa. II-Relationship between survival after cryopreservation and osmotic tolerance of spermatozoa from three strains of mice, Cryobiology 35 (1997) 255–269.

    Article  Google Scholar 

  42. Thilmant P., Congélation du sperme de verrat en paillette de 0,5 ml. Résultats sur le terrain, Ann. Méd. Vét. 141 (1997) 457–462.

    Google Scholar 

  43. Viskanta R., Bianchi M.V.A., Critser J.K., Gao D., Solidification processes of solutions, Cryobiology 34 (1997) 348–362.

    Article  CAS  Google Scholar 

  44. Watson P.F., Recent development and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function, Reprod. Fert. Dev. 7 (1995) 871–891.

    Article  CAS  Google Scholar 

  45. Watson P.F., Duncan A.E., Effect of salt concentration and unfrozen water fraction on the viability of slowly frozen ram spermatozoa, Cryobiology 25 (1988) 131–142.

    Article  CAS  Google Scholar 

  46. Woelders H., Matthijs A., Engel B., Effects of trehalose and sucrose, osmolality of the freezing medium, and cooling rate on viability and intactness of bull sperm after freezing and thawing, Cryobiology 35 (1997) 93–105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Courtens.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Courtens, JL., Réty, JM. Numerical simulation for freezing and thawing mammalian spermatozoa. Evaluation of cell injuries at different depths in bags or straws during all steps. Genet Sel Evol 33 (Suppl 1), S85 (2001). https://doi.org/10.1186/BF03500875

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/BF03500875

Keywords

Mots clés