Skip to main content
  • III — Méthodes D’inventaire et de Caractérisation de la Diversité Génétique en Milieu Naturel / Methods for Inventory and Characterization of Genetic Diversity in Natural Environment
  • Open access
  • Published:

Éléments transposables et évolution du génome d’une espèce invasive: le cas de Drosophila simulans

Transposable elements and genome evolution of invasive species: the case of Drosophila

Résumé

Les deux espèces jumelles D. melanogaster et D. simulans diffèrent pour leur nombre global de copies d’éléments transposables (ETs) de leur génome. D. simulans a moins de copies que D. melanogaster et le nombre de copies varie fortement entre populations naturelles. En effet, certains ETs sont absents de la plupart des populations de D. simulans mais présents en nombre élevé de copies dans quelques-unes. Ces données suggèrent que le génome de l’espèce D. simulans est en train d’être envahi par de nombreux ETs qui auraient été „ mobilisés ” récemment. Cette mobilisation serait reliée à la colonisation du monde par D. simulans. Nous donnons des arguments en faveur de cette hypothèse par une étude détaillée du nombre de copies, de la structure de ces copies et du taux de transcription du rétro-transposon 412 dans les populations des deux espèces D. melanogaster et D. simulans. Nous soutenons ainsi l’idée que la colonisation de nouveaux habitats par une espèce serait associée à une mobilisation de ses éléments transposables, ce qui conduirait à un accroissement de la taille des génomes des espèces invasives.

Abstract

Drosophila simulans presents a large variation in copy number among various transposable elements (TEs) and among natural populations for a given element. Some elements are absent in most populations, except in one or two which have many copies. This suggests that some TEs are being awaken in some populations and are in the process of invading the species while it is colonizing the world. We present evidence for this hypothesis by a detailed analysis of copy number, structure of the copy sequences, and transcription rate of the retrotranspos-able element 412 in natural populations of the two sister species D. melanogaster and D. simulans. The data support the idea that colonization of new habitats by a species is associated with mobilization of TEs, which leads to an increase in genome size of the invading species.

Références

  1. Anxolabéhère D., Kidwell M.G., Periquet G., Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements, Mol. Biol. Evol. 5 (1988) 252–269.

    PubMed  Google Scholar 

  2. Arnault C., Dufournel I., Genome and stresses: Reactions against aggressions, behavior of transposable elements, Genetica 93 (1994) 149–160.

    Article  CAS  PubMed  Google Scholar 

  3. Arnault C., Lœvenbruck C., Biémont C., Transposable element mobilization is not induced by heat shocks in Drosophila melanogaster, Naturwissenschaften 84 (1997) 410–414.

    Article  CAS  PubMed  Google Scholar 

  4. Beckenback A.T., Prévosti A., Colonization of North America by the european species, Drosophila subobscura and D. ambigua, Amer. Nat. 115 (1986) 10–18.

    Article  Google Scholar 

  5. Bhadra U., Pal-Bhadra M., Birchler J.A., A trans-acting modifier causing extensive overexpression of genes in Drosophila melanogaster, Mol. Gen. Genet. 254 (1997) 621–634.

    Article  CAS  PubMed  Google Scholar 

  6. Biémont C., Population genetics of transposable DNA elements. A Drosophila point of view, Genetica 86 (1992) 67–84.

    PubMed  Google Scholar 

  7. Biémont C., Dynamic equilibrium between insertion and excision of P elements in highly inbred lines from an M’ strain of Drosophila melanogaster, J. Mol. Evol. 39 (1994) 466–472.

    Article  PubMed  Google Scholar 

  8. Biémont C., Vieira C., Borie N., Lepetit D., Transposable elements and genome evolution: The case of Drosophila simulans, Genetica 107 (2000) 113–120.

    Article  Google Scholar 

  9. Biémont C., Vieira C., Hoogland C., Cizeron G., Lœvenbruck C., Arnault C., Carante J.P., Maintenance of transposable element copy number in natural populations of Drosophila melanogaster and D. simulans, Genetica 100 (1997) 161–166.

    Article  PubMed  Google Scholar 

  10. Bonnivard E., Bazin C., Denis B., Higuet D., A scenario for the hobo trans-posable element invasion, deduced from the structure of natural populations of Drosophila melanogaster using tandm TPE repeats, Genet. Res. Camb. 76 (2000) 217–226.

    Article  Google Scholar 

  11. Borie N., Lœvenbruck C., Biémont C., Developmental expression of 412 retro-transposon in natural populations of D. melanogaster and D. simulans, Genet. Res. Camb. (2000) (sous presse).

    Google Scholar 

  12. Brookfield J.F.Y., Models of repression of transposition in P-M hybrid sdysgen-esis by P cytotype and by zygotically encoded repressor proteins, Genetics 128 (1991) 471–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Brookfield J.F.Y., Models of the spread of non-autonomous selfish transpos-able elements when transposition and fitness are coupled, Genet. Res. 67 (1996) 199–209.

    Article  Google Scholar 

  14. Brookfield J.F.Y., Badge R.M., Population genetics models of transposable elements, Genetica 100 (1997) 281–294.

    Article  CAS  PubMed  Google Scholar 

  15. Bucheton A., Paro R., Sang H.M., Pélisson A., Finnegan D.J., The molecular basis of IR hybrid dysgenesis in D. melanogaster: Identification, cloning and properties of the I f.c.o., Cell 38 (1984) 153–163.

    Article  CAS  PubMed  Google Scholar 

  16. Bucheton A., Vaury C., Chaboissier M.C., Abad P., Pélisson A., Simonelig M., I elements and the Drosophila g.n.m., Genetica 86 (1992) 175–190.

    Article  CAS  PubMed  Google Scholar 

  17. Busseau I., Chaboissier M.C., Pélisson A., Bucheton A., I factors in Drosophila melanogaster. Transposition under control, Genetica 93 (1994) 101–116.

    Article  CAS  PubMed  Google Scholar 

  18. Cavarec L., Heidmann T., The Drosophila copia retrotransposon contains binding sites for transcriptional regulation by homeoproteins, Nucleic Acids Res. 21 (1993) 5041–5049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chakrani F., Capy P., David J.R., Developmental temperature and somatic excision rate of mariner transposable element in three natural populations of Drosophila simulans, Genet. Select. Evol. 25 (1993) 121–132.

    Article  CAS  Google Scholar 

  20. Charlesworth B., Charlesworth D., The population dynamics of transposable elements, Genet. Res. Camb. 42 (1983) 1–27.

    Article  Google Scholar 

  21. Cizeron G., Biémont C., Polymorphism in structure of the retrotransposable element 412 in Drosophila simulans and D. melanogaster populations, Gene 232 (1999) 183–190.

    Article  CAS  PubMed  Google Scholar 

  22. Costa R., Peixoto A.A., Barbujani G., Kyriacou C.P., A latitudinal cline in a Drosophila clock gene, Proc. R. Soc. Lond. [Biol.] 250 (1992) 43–49.

    Article  CAS  Google Scholar 

  23. Coyne J.A., Mutation rates in hybrids between sibling species of Drosophila, Heredity 63 (1989) 155–162.

    PubMed  Google Scholar 

  24. Crozatier M., Vaury C., Busseau L, Pélisson A., Bucheton A., Structure and genomic organization of I elements involved in I-R hybrid dysgenesis in Drosophila melanogaster, Nucleic Acids Res. 16 (1988) 9199–9213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Csink A.K., Mcdonald J.F., Copia expression is variable among natural populations of Drosophila, Genetics 126 (1990) 375–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Daniels S.B., Clark S.H., Kidwell M.G., Chovnick A., Genetic transformation of Drosophila melanogaster with an autonomous P element: phenotypic and molecular analyses of long-established transformed lines, Genetics 115 (1987) 711–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Daniels S.B., Peterson K.R., Strausbaugh L.D., Kidwell M.G., Chovnick A., Evidence for horizontal transmission of the P transposable element between drosophila species, Genetics 124 (1990) 339–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. David J.R., Tsacas L., Cosmopolitan, subcosmopolitan and widespread species: Different strategies within the Drosophilid family (Diptera), C. R. Soc. Biogéo. 57 (1981) 11–26.

    Google Scholar 

  29. DeBerardinis R.J., Goodier J.L., Ostertag E.M., Kazazian H.H., Rapid amplification of a retrotransposon subfamily is evolving the mouse g.n.m., Nature Genet. 20 (1998) 288–290.

    Article  CAS  Google Scholar 

  30. Dimitri P., Constitutive heterochromatin and transposable elements in Drosophila melanogaster, Genetica 100 (1997) 85–93.

    Article  CAS  PubMed  Google Scholar 

  31. Duke J.S., Mooney H.A., Does global change increase the success of biological invaders?, Trends Ecol. Evolut. 14 (1999) 135–139.

    Article  Google Scholar 

  32. Duvernell D.D., Turner B.J., Variation and divergence of Death Valley pupfish populations at retrotransposon-defined loci, Mol. Biol. Evol. 16 (1999) 363–371.

    Article  CAS  Google Scholar 

  33. Eichenbaum Z., Livneh Z., UV light induces IS 10 transposition in Escherichia coli, Genetics 149 (1998) 1173–1181.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Evgen’ev M.B., Yenikolopov G.N., Peunova N.I., Ilyin Y.V., Transposition of mobile genetic elements in interspecific hybrids of Drosophila, Chromosoma 85 (1982) 375–386.

    Article  PubMed  Google Scholar 

  35. Flavell A.J., Ruby S.W., Toole J.J., Roberts B.E., Rubin G.M., Translation and developmental regulation of RNA encoded by the eukaryotic transposable element copia, Proc. Natl. Acad. Sci. USA 77 (1980) 7107–7111.

    Article  CAS  PubMed  Google Scholar 

  36. Garza D., Medhora M., Koga A., Hartl D.L., Introduction of the transposable element mariner into the germline of Drosophila melanogaster, Genetics 128 (1991) 303–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Giraud T., Capy P., Somatic activity of the mariner transposable element in natural populations of Drosophila simulans, Proc. R. Soc. Lond. [Biol.] 263 (1996) 1481–1486.

    Article  CAS  Google Scholar 

  38. Good A.G., Meister G.A., Brock H.W., Grigliatti T.A., Hickey D.A., Rapid spread of transposable P elements in experimental populations of Drosophila melanogaster, Genetics 122 (1989) 387–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gregory T.R., Hebert P.D., The modulation of DNA content: Proximate causes and ultimate consequences, Genome Res. 9 (1999) 317–24.

    CAS  PubMed  Google Scholar 

  40. Hale L.R., Singh R.S., Contrasting patterns of genetic structure and evolutionary history as revealed by mitochondrial DNA and nuclear gene-enzyme variation between Drosophila melanogaster and Drosophila simulans, J. Genet. 70 (1991) 79–90.

    Article  Google Scholar 

  41. Hamblin M.T., Veuille M., Population structure among african and derived populations of Drosophila simulans: Evidence for ancient subdivision and recent admixture, Genetics 153 (1999) 305–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Heslop-Harrison J.S., Brandes A., Taketa S., Schmidt T., Vershinin A.V., Alkhimova E.G., Kamm A., Doudrick R.L., Schwarzacher T., Katsiotis A., Kubis S., Kumar A., Pearce S.R., Flavell A.J., Harrison G.E., The chromosomal distribution of Tyl-copia group retrotransposable elements in higher plants and their implications for genome evolution, Genetica 100 (1997) 197–204.

    Article  CAS  PubMed  Google Scholar 

  43. Hirochika H., Sugimoto K., Otsuki Y., Tsugawa H., Kanda M, Retrotransposons of rice involved in mutations induced by tissue culture, Proc. Natl. Acad. Sci. USA 9 (1996) 7783–7788.

    Article  Google Scholar 

  44. Irvin S.D., Wetterstrand K.A., Hutter CM., Aquadro C.F., Genetic variation and differentiation at microsatellite loci in Drosophila simulans: Evidence for founder effects in new world populations, Genetics 150 (1998) 777–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jensen S., Gassama M.-P., Heidmann T., Taming of transposable elements by homology-dependent gene silencing, Nature 21 (1999) 209–212.

    CAS  Google Scholar 

  46. Kareiva P., Developing a predictive ecology for non-indigenous species and ecological invasions, Ecology 77 (1996) 1651–1652.

    Article  Google Scholar 

  47. Ke N., Voytas D.F., cDNA of the yeast retrotransposon Ty5 preferentially re-combines with substrates in silent chromatin, Mol. Cell. Biol. 19 (1999) 484–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kidwell M.G., Lisch D.R., Transposable elements as sources of variation in animals and p.a.t., Proc. Natl. Acad. Sci. USA 94 (1997) 7704–7711.

    Article  CAS  PubMed  Google Scholar 

  49. Kimura K., Kidwell M.G., Differences in P element population dynamics between the sibling species Drosophila melanogaster and D. simulans, Genet. Res. 63 (1994) 27–38.

    Article  CAS  PubMed  Google Scholar 

  50. Labate J.A., Biermann C.H., Eanes W.F., Nucleotide variation at the runt locus in Drosophila melanogaster and Drosophila simulans, Mol. Biol. Evol. 16 (1999) 724–731.

    Article  CAS  PubMed  Google Scholar 

  51. Labrador M., Farré M., Utzet F., Fontdevilla A., Interspecific hybridization increases transposition rates of O.v.d., Mol. Biol. Evol. 16 (1999) 931–937.

    Article  CAS  PubMed  Google Scholar 

  52. Labrador M., Seleme M.C., Fontdevila A., The evolutionary history of Drosophila buzzatii. XXXIV. The distribution of the retrotransposon Osvaldo in original and colonizing populations, Mol. Biol. Evol. 15 (1998) 1532–1547.

    Article  CAS  PubMed  Google Scholar 

  53. Lachaise D., Cariou M., David J.R., Lemeunier F., Tsacas L., Ashburner M., Historical biogeography of the Drosophila melanogaster species subgroup, Evol. Biol. 22 (1988) 159–227.

    Article  Google Scholar 

  54. Löwer R., Löwer J., Kurth R., The viruses in all of us: Characteristics and biological significance of human endogenous retrovirus sequences, Proc. Natl. Acad. Sci. USA 93 (1996) 5177–5184.

    Article  PubMed  Google Scholar 

  55. Maca J., Bächli G., On the distribution of Chymomyza amoena (Loew), a species recently introduced into E.r.p., Bull. Soc. Ent. Suisse 67 (1994) 183–188.

    Google Scholar 

  56. Martin G., Wiernasz D., Schedl P., Evolution of Drosophila repetitive-dispersed DNA, J. Mol. Evol. 19 (1983) 203–213.

    Article  CAS  PubMed  Google Scholar 

  57. McDonald J.F., Transposable elements: Possible catalists of organismic evolution, Trends Ecol. Evol. 10 (1995) 123–126.

    Article  CAS  PubMed  Google Scholar 

  58. McDonald J.F., Transposable elements, gene silencing and macroevolution, Trends Ecol. Evol. 13 (1998) 98–95.

    Google Scholar 

  59. Mhiri C., Morel J.B., Vernettes S., Casacuberta J.M., Lucas E., Grandbastien M.A. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic s.r.s., Plant Mol. Biol. 33 (1997) 257–266.

    Article  CAS  PubMed  Google Scholar 

  60. Montchamp-Moreau C., Hybrid dysgenesis in P-transformed lines of Drosophila simulans, Evolution 44 (1990) 194–203.

    PubMed  Google Scholar 

  61. Oakeshott J.G., Gibson J.B., Anderson P.R., Knibb W.R., Anderson D.G., Chambers G.K., Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents, Evolution 36 (1992) 86–96.

    Article  Google Scholar 

  62. O’Neill R.J.W., O’Neill M.J., Graves J.A.M., Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian h.b.i., Nature 393 (1998) 68–72.

    Article  PubMed  Google Scholar 

  63. Orr M.R., Smith T.B., Ecology and speciation, Trends Ecol. Evol. 13 (1998) 502–506.

    Article  CAS  PubMed  Google Scholar 

  64. Pagel M., Johnstone R.A., Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox, Proc. R. Soc. Lond. [Biol.] 249 (1992) 119–124.

    Article  CAS  Google Scholar 

  65. Parkhurst S.M., Corces V.G., Developmental expression of Drosophila melanogaster retrovirus-like transposable elements, EMBO J. 6 (1987) 419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Robertson H.M., Lampe D.J., Distribution of transposable elements in arthropods, Annu. Rev. Entomol. 40 (1995) 333–357.

    Article  CAS  PubMed  Google Scholar 

  67. Rubin G.M., Spradling A.C., Genetic transformation of Drosophila with transposable element vectors, Science 218 (1982) 348–53.

    Article  CAS  PubMed  Google Scholar 

  68. Russell A.L., Woodruff R.C., The genetics and evolution of the mariner transposable element in Drosophila simulans: Worldwide distribution and experimental population dynamics, Genetica 105 (1999) 149–164.

    Article  CAS  PubMed  Google Scholar 

  69. SanMiguel P., Gaut B.S., Tikhonov A., Nakajima Y., Bennetzen J.L., The paleontology of intergene retrotransposons of maize, Nature Genet. 2 (1998) 43–45.

    Article  CAS  Google Scholar 

  70. Scherer G., Telford J., Baldari C., Pirrotta V., Isolation of cloned genes differentially expressed at early and late stages of Drosophila embryonic development, Dev. Biol. 86 (1981) 438–447.

    Article  CAS  PubMed  Google Scholar 

  71. Sherwood S.W., Patton J., Genome evolution in Pocket Gophers (genus Tho-momys). II. Variation in cellular DNA content, Chromosoma 85 (1982) 163–179.

    Article  CAS  PubMed  Google Scholar 

  72. Smit F.A., Interspersed repeats and other mementos of transposable elements in mammalian genomes, Curr. Opin. Genetics. Dev. 9 (1999) 657–663.

    Article  CAS  Google Scholar 

  73. Sun X., Wahlstrom J., Karpen G., Molecular structure of a functional Drosophila centromere, Cell 91 (1997) 1007–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thompson Jr., J.N., Woodruff R.C., Increased mutation in crosses between geographically separated strains of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 77 (1980) 1059–1062.

    Article  PubMed  Google Scholar 

  75. Tsitrone A., Charles S., Biémont C., Dynamics of transposable elements under the selection model, Genet. Res. 74 (1999) 159–164.

    Article  Google Scholar 

  76. Uozu S., Ikehashi H., Ohmido N., Ohtsubo H., Ohtsubo E., Pukui K., Repetitive sequences: Cause for variation in genome size and chromosome morphology in the genus Oryza, Plant Mol. Biol. 35 (1997) 791–799.

    Article  CAS  PubMed  Google Scholar 

  77. Vaury C., Chaboissier M.C., Drake M.E., Lajoinie O., Dastugue B., Pélisson A., The doc transposable element in D. melanogaster and D. simulans: Genomic distribution and transcription, Genetica 93 (1994) 117–124.

    Article  CAS  PubMed  Google Scholar 

  78. Vieira C., Aubry P., Lepetit D., Biémont C., A temperature cline in copy number for 412 but not roo/B104 retrotransposons in populations of Drosophila simulans, Proc. R. Soc. Lond. (Biol.) 265 (1998) 1–5.

    Article  Google Scholar 

  79. Vieira C., Biémont C., Geographical variation in insertion site number of retrotransposon 412 in Drosophila simulans, J. Mol. Evol. 42 (1996) 443–451.

    Article  CAS  PubMed  Google Scholar 

  80. Vieira C., Biémont C., Transposition rate of the 412 retrotransposable element is independent of copy number in natural populations of Drosophila simulans, Mol. Biol. Evol. 14 (1997) 185–188.

    Article  CAS  PubMed  Google Scholar 

  81. Vieira C., Lepetit D., Dumont S., Biémont C., Wake up of transposable elements following Drosophila simulans worldwide colonization, Mol. Biol. Evol. 16 (1999) 1251–1255.

    Article  CAS  PubMed  Google Scholar 

  82. Vieira C., Piganeau G., Biémont C., High copy numbers of multiple transposable elements in an australian population of D. simulans, Genet. Res. 76 (2000) 117–119.

    Article  CAS  PubMed  Google Scholar 

  83. Walbot V., UV-B damage amplified by transposons in maize, Nature 397 (1998) 398–399.

    Article  CAS  Google Scholar 

  84. Withers P., Allemand R., Chymomyza amoena (Loew), drosophile nouvelle pour la France (Diptera Drosophilidae), Bull. Mens. Soc. linn. Lyon 67 (1998) 159–160.

    Google Scholar 

  85. Woodruff R.C., Thompson J.N., Lyman R.F., Intraspecific hybridization and the release of mutator activity, Nature 278 (1979) 277–279.

    Article  CAS  PubMed  Google Scholar 

  86. Yoder J.A., Walsh C., Bestor T.H., Cytosine methylation and the ecology of intragenomic parasites, Trends Genet. 13 (1997) 335–340.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Biémont.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Biémont, C., Vieira, C. & Borie, N. Éléments transposables et évolution du génome d’une espèce invasive: le cas de Drosophila simulans. Genet Sel Evol 33 (Suppl 1), S107 (2001). https://doi.org/10.1186/BF03500876

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/BF03500876

Keywords

Mots clés