Skip to main content
  • III — Méthodes D’inventaire et de Caractérisation de la Diversité Génétique en Milieu Naturel / Methods for Inventory and Characterization of Genetic Diversity in Natural Environment
  • Open access
  • Published:

Original article Microsatellite analysis of polyandry and spawning site competition in brown trout (Salmo trutta L.)

Analyse de la polyandrie et de la compétition pour les sites de reproduction chez la truite commune (Salmo trutta L.) à l’aide de marqueurs microsatellites

Abstract

Polyandry and competition for spawning sites in a sedentary brown trout population was studied using four highly variable microsatellite loci. All loci combined gave average exclusion probabilities of 0.91 and 0.97 based on two reference samples of spawners. All eggs from 22 redds of this population were collected. For 10 of these redds, tissue samples of potential mothers, i.e. females that were observed to show spawning behaviour on these redds, were sampled. Only in four cases, the observed four-locus genotype of the putative mother conformed with corresponding egg-genotypes. For all four redds polyandry was detected encompassing two fathering males. We applied a sequential procedure of multiple paternity analysis that allowed the assignment of a single paternal genotype to each individual egg, and thus, to quantify the genetic contribution of different males. In each redd, one male fertilised the majority of eggs (60-92%) and the contribution of additional males ranged between 8-40%. The total number of eggs in the four redds represented 11-21% of the total fecundity of the mothers. This indicates that females in this population spread their eggs among several redds. Eight cases of incomplete redd superimposition were detected among all 22 redds analysed indicating strong competition for spawning sites between females.

Résumé

Une étude de la polyandrie et de la compétition pour les

References

  1. Andersson M., Sexual Selection, Princeton University Press, New Jersey, 1994.

    Google Scholar 

  2. Allendorf F.W., Waples R.S., Conservation and genetics of salmonid fish, in: Avise J.C., Hamrick J.L. (Eds.), Conservation genetics: case histories from nature, Chapman and Hall, New York, 1996, pp. 238–255.

    Chapter  Google Scholar 

  3. Bagliniere J.-L., Champigneulle A., Nihouarn A., La fraie du saumon atlantique (Salmo salar L.) et de la truite commune (Salmo trutta L.) sur le bassin du Scorff, Cybium 7 (1979) 75–96.

    Google Scholar 

  4. Barlaup B.J., Lura H., Saegrov H., Sundt R.C., Inter- and intra-specific variability in female salmonid spawning behaviour, Can. J. Zool. 72 (1994) 636–642.

    Article  Google Scholar 

  5. Beall E., Marty C., Optimisation de la reproduction naturelle du saumon atlantique en chenal de fraie: influence de la densité des femelles, in: Thibault M., Billard R. (Eds.), Restauration des rivières à saumons, Inra, Paris, 1987, pp. 231–238.

    Google Scholar 

  6. Clapham P.J., Palsboll P.J., Molecular analysis of paternity shows promiscous mating in female humpback whales (Megaptera novaengeliae, Borowski), Proc. R. Soc. Lond. [Biol.] 264 (1997) 95–98.

    Article  CAS  Google Scholar 

  7. Chakravarti A., Li C.C., The effect of linkage on paternity calculations, in: Walker R.H. (Ed.), Inclusion probabilities in parentage testing, American Association of Blood Banks, Arlington, 1983, pp. 411–420.

    Google Scholar 

  8. Chakraborty R., Shaw M.W., Schull W.J., Exclusion of paternity: The current state of the art, Am. J. Hum. Genet. 28 (1974) 477–488.

    Google Scholar 

  9. Chesser R.K., Gene diversity and female philopatry, Genetics 127 (1991) 437–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chesser R.K., Influence of gene flow and breeding tactics on gene diversity within populations, Genetics 129 (1991) 573–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Crisp D.T., Use of artificial eggs studies of washout depth and drift distances for salmonid eggs, Hydrobiologia 178 (1989) 155–163.

    Article  Google Scholar 

  12. Crisp D.T., Carling P.A., Observations on siting, dimensions and structure of salmonid redds, J. Fish Biol. 34 (1989) 119–134.

    Article  Google Scholar 

  13. Davies N.B., Mating systems, in: Krebs J.R., Davies N.B. (Eds.), Behavioural Ecology, Blackwell Scientific Publications, Oxford, 1991, pp. 263–294.

  14. Elliott J.M., The downstream drifting of eggs of brown trout, Salmo trutta L., J. Fish Biol. 9 (1976) 45–50.

    Article  Google Scholar 

  15. Elliott J.M., Quantitative Ecology and the Brown Trout, Oxford University Press, Oxford, 1994.

    Google Scholar 

  16. Elliott J.M., Fecundity and egg density in the redd of sea trout, J. Fish Biol. 47 (1995) 893–901.

    Article  Google Scholar 

  17. Estoup A., Rousset F., Michalakis Y., Cornuet J.-M., Adriamanga M., Guyomard R., Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta), Mol. Ecol. 7 (1998) 339–353.

    Article  CAS  Google Scholar 

  18. Estoup A., Largiadè r C.R., Perrot E., Chourrout D., Rapid one tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes, Mol. Marine Biol. Biotech. 5 (1996) 295–298.

    CAS  Google Scholar 

  19. Estoup A., Gharbi K., SanCristobal M., Chevalet C., Haffray P., Guyomard R., Parentage assignment using microsatellites in turbot (Scophtalmus maximus) and rainbow trout (Oncorhynchus mykiss) hatchery populations, Can. J. Fish. Aquat. Sci. 57 (1998) 715–723.

    Article  Google Scholar 

  20. Estoup A., Solignac M., Cornuet J.M., Precise assessment of the number of patrilines and of genetic relatedness in honey bee colonie, Proc. R. Soc. Lond. [Biol.] 258 (1994) 1–7.

    Article  CAS  Google Scholar 

  21. Foote C.J., Brown G.S., Wood C.C., Spawning success of males using alternative mating tactics in sockeye salmon, Oncorhynchus nerka. Can. J. Fish. Aquat. Sci. 54 (1997) 1785–1795.

    Article  Google Scholar 

  22. Gross M.R., Disruptive selection for alternative life histories in salmon, Nature 313 (1985) 47–48.

    Article  Google Scholar 

  23. Hardy C.J., An examination of eleven stranded redds of brown trout (Salmo trutta), excavated in the Selwyn River during July and August 1960, New Zealand J. Sci. 6 (1963) 107–119.

    Google Scholar 

  24. Hayes J.W., Competition for spawning space between brown trout (S. trutta) and rainbow trout (S. gairdneri) in a lake inlet tributary, New Zealand, Can. J. Fish. Aquat. Sci. 44 (1987) 40–47.

    Article  Google Scholar 

  25. Hobbs D.F., The natural reproduction of quinnat salmon, brown and rainbow trout in certain New Zealand waters, Fish. Bull. Wellington, N.Z. 6 (1937) 1–104.

    Google Scholar 

  26. Hutchings J.A., Myers R.A., Mating success of alternative maturation phenotypes in male Atlantic salmon, Salmo salar, Oecol. 75 (1988) 169–174.

    Article  CAS  Google Scholar 

  27. Jones J.W., Ball J.N., The spawning behaviour of brown trout and salmon, Br. J. Animal Behav. 2 (1954) 103–114.

    Article  Google Scholar 

  28. Jones A.G., Avise J.C., Polygynandry in the dusky pipefish Syngnathus floridae revealed by microsatellite DNA markers, Evolution 51 (1997) 1611–1622.

    Article  Google Scholar 

  29. Jones A.G., Ostlund-Nilsson S., Avise J.C., A microsatellite assessment of sneaked fertilizations and egg thievery in the fifteenspine stickleback, Evolution 52 (1998) 848–858.

    Article  Google Scholar 

  30. Jonsson B., Jonsson N., Partial migration: Niche shift versus sexual maturation in fishes, Rev. Fish Biol. Fish. 3 (1993) 348–365.

    Article  Google Scholar 

  31. Jordan W.C., Youngson A.F., The use of genetic marking to assess the reproductive success of mature male Atlantic salmon parr (Salmo salar L.) under natural spawning conditions, J. Fish Biol. 41 (1992) 613–618.

    Article  Google Scholar 

  32. Kellogg K.A., Markert J.A., Stauffer J.R., Kocher T.D., Microsatellite variation demonstrates multiple paternity in lekking cichlid fishes from Lake Malawi, Afrika, Proc. R. Soc. Lond. [Biol.] 260 (1995) 79–84.

    Article  Google Scholar 

  33. Maekawa K., Nakano S., Yamamoto S., Spawning behaviour and size-assortative mating of Japanese charr in an artificial lake-inlet stream system, Environ. Biol. Fishes 39 (1994) 109–117.

    Article  Google Scholar 

  34. Martinez J.L., Moran P., Perrez J. De Gaudemar B., Beall E., Garcia-Vasquez E., Multiple paternity increases effective size of southern Atlantic salmon populations, Mol. Ecol. 9 (2000) 293–298.

    Article  CAS  Google Scholar 

  35. Mason T.C., Chapman D.W., Significance of early emergence, environmental rearing capacity, and behavioral ecology of juvenile coho salmon in stream channels, J. Fish. Board Can. 22 (1965) 173–190.

    Article  Google Scholar 

  36. McNeil W.J., Randomness in distribution of pink salmon redds, J. Fish. Board Can. 24 (1967) 1629–1634.

    Article  Google Scholar 

  37. Moran P., Pendas A.M., Beall E., Garcia-Vazquez E., Genetic assessment of the reproductive succes of Atlantic salmon precocious parr by means of VNTR loci, Heredity 77 (1996) 655–660.

    Article  Google Scholar 

  38. Nei M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics 89 (1978) 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Northcote T.G., Migration and residency in stream salmonids — some ecological considerations and evolutionary consequences, Noric. J. Freshw. Res. 67 (1992) 5–17.

    Google Scholar 

  40. O’Farrel M.M., Wheland K.F., Wheland B.J., A preliminary appraisal of the fecundity of migratory trout (Salmo trutta) in the Erriff catchment, western Ireland, Pol. Arch. Hydrobiologii 36 (1989) 273–281.

    Google Scholar 

  41. Ottaway E.M., Carling P.A., Clarke A., Reader N.A., Observations on the structure of brown trout, Salmo trutta Linnaeus, redds, J. Fish Biol. 19 (1981) 593–607.

    Article  Google Scholar 

  42. Pemberton J.M., Slate J., Bancroft D.R., Barrett J.A., Non amplifying alleles at microsatellite loci: a caution for parentage and population studies, Mol. Ecol. 4 (1995) 249–252.

    Article  CAS  Google Scholar 

  43. Presa P., Guyomard R., Conservation of microsatellites in three species of salmonids, J. Fish Biol. 49 (1996) 1326–1329.

    Google Scholar 

  44. Primmer C.R., Moller A.P., Ellegren H., Resolving genetic relationships with microsatellite markers: A parentage testing system for the swallow Hirundo rustica, Mol. Ecol. 4 (1995) 493–498.

    Article  CAS  Google Scholar 

  45. Reynolds J.D., Animal breeding systems, TREE 11 (1996) 68–72.

    CAS  PubMed  Google Scholar 

  46. Raymond M., Rousset F., GENEPOP (version 1.2): Population genetics software for exact test and ecumenicism, J. Hered. 86 (1995) 248–249.

    Article  Google Scholar 

  47. Sakamoto T., Okamoto N., Ikeda Y., Nakamura Y., Sato T., Dinucleotide-repeat polymorphism in DNA of rainbow trout and its application in fisheries sciences, J. Fish Biol. 44 (1994) 1093–1096.

    Article  CAS  Google Scholar 

  48. Soulé M.E., What do we really know about extinction?, in: Schonewald-Cox C.M., Chambers S.M., MacBryde B., Thomas L. (Eds.), Genetics and conservation, The Benjamin/Cummings Publishing Company Inc, London, 1983, pp. 111–124.

    Google Scholar 

  49. Sugg D.W., Chesser R.K., Effective population sizes with multiple paternity, Genetics 137 (1994) 1147–1155.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Taborsky M., Sneakers, satellites, and helpers: Parasitic and cooperative behavior in fish reproduction, Adv. Stud. Behav. 23 (1994) 1–100.

    Article  Google Scholar 

  51. Thomaz D., Beall E., Burke T., Alternative reproductive tactics in Atlantic salmon factors affecting mature parr success, Proc. R. Soc. Lond. [Biol.] 264 (1997) 219–226.

    Article  Google Scholar 

  52. Van den Berghe E.P., Gross M.R., Natural selection resulting from female breeding competition in a pacific salmon (coho: Oncorhynchus kisutch), Evolution 43 (1989) 125–140.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo R. Largiadèr.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Largiadèr, C.R., Estoup, A., Lecerf, F. et al. Original article Microsatellite analysis of polyandry and spawning site competition in brown trout (Salmo trutta L.). Genet Sel Evol 33 (Suppl 1), S205 (2001). https://doi.org/10.1186/BF03500881

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/BF03500881

Keywords

Mots clés