Skip to main content
  • III — Méthodes D’inventaire et de Caractérisation de la Diversité Génétique en Milieu Naturel / Methods for Inventory and Characterization of Genetic Diversity in Natural Environment
  • Open access
  • Published:

Diversité génétique, variation géographique et flux géniques chez quelques lépidoptères rhopalocères français

Genetic variation, geographic variation and gene flow in some French butterfly species

Résumé

— Nous présentons une étude synthétique et comparative de la structure génétique des populations de trois papillons diurnes français, Proclossiana eunomia, Parnassius apollo et Euphydryas aurinia. Grâce à l’électrophorèse des allozymes, il a été possible d’estimer comparativement le niveau de variation génétique à l’intérieur des divers peuplements des espèces étudiées. Ces données permettent également de proposer des éléments d’explication de cette variation: fonctionnement actuel des populations et métapopulations, histoire des biomes ouest-européens au cours des vingt derniers millénaires. Chacun des cas étudiés possède une spécificité biogéographique: distribution de type „ relique glaciaire ” très disjointe (P. eunomia), espèce de montagne largement répandue, mais en forte régression (P. apollo), espèce très diversifiée écologiquement (E. aurinia). D’une manière générale, les populations méridionales montrent des variations importantes au niveau local et régional et présentent une structuration géographique nette. Les populations septentrionales montrent une diversité génétique plus faible et une structuration spatiale confuse, avec un effet d’isolement par la distance faible ou absent. Ce phénomène est le plus accusé pour les populations du Nord-Est du Massif Central de P. eunomia, qui résultent d’une introduction délibérée datant de 25 ans. Dans le cas d’ E. aurinia, l’adaptation à des plantes nourricières différentes est aussi liée à la différenciation génétique et à sa variation géographique. Ces caractéristiques peuvent être au moins partiellement expliquées par la colonisation postglaciaire du nord de l’Europe à partir des refuges méridionaux où les biomes tempérés et méditerranéens étaient concentrés pendant les glaciations. Cette colonisation s’est accompagnée d’une perte de diversité génétique et d’une variation sans structuration géographique nette. Par ailleurs, la diversification écologique très élevée du sud de l’Europe permet et a permis une plus grande diversification génétique. Le glissement vers le nord des aires de nombreuses espèces risque donc de s’accompagner d’une perte de diversité génétique.

Abstract

We present here a comparative and synthetic study of the genetic structure of the populations of three French butterfly species, Proclossiana eunomia, Parnassius apollo and Euphydryas aurinia. Using allozyme electrophoresis, it is possible to estimate the level of genetic variation within and between populations of these species in various regions of France and neighbouring countries. These data also allow us to suggest an explanation of this variation: present functioning of populations and metapopulations, adaptation to foodplants and history of the European biomes during the last twenty millenia. Each of the presented cases presents a biogeographical specificity: very disjunct distribution of the “glacial relict” type (Proclossiana eunomia), widespread mountain species, presently in strong regression (Parnassius apollo), ecologically very diversified species (Euphydryas aurinia). Generally speaking, genetic variation is large at both local and regional scale in southern regions where the genetic structure follows a clear geographic structure. Northern populations show a lower genetic diversity and a confused genetic structure, with an isolation-by-distance effect lower or absent. This phenomenon is the most obvious in P. eunomia populations resulting from a deliberate introduction in northeastern Massif Central 25 years ago. In the case of E. aurinia, the adaptation to different foodplants plays a rôle in genetic differentiation and its geographic variation. These characteristics can be explained at least in part by the postglacial colonization of northern Europe from southern refugia where temperate and mediterranean biomes were concentrated during glacial times. This extension has been accompanied by a loss of genetic diversity and a variation without clearcut geographic organization. Otherwise, the very large ecological diversity of southern Europe has allowed and still allows a larger genetic differentiation within species. The northwards shift of species distribution associated with present climate change is therefore likely to cause a severe loss of genetic diversity within species.

References

  1. Barascud B., Contribution à l’étude génétique d’une espèce dont l’habitat est fragmenté à différentes échelles: Proclossiana eunomia (Esper, 1799) (Lepidop-tera, Nymphalidae), Thèse, Université de Provence, (1996).

    Google Scholar 

  2. Barascud B., Martin J.-F., Baguette M., Descimon H., Genetic consequences of an introduction-colonization process in an endangered butterfly species, J. Evol. Biol. 12 (1999) 697–709.

    Article  Google Scholar 

  3. Begun D.J., Aquadro C.F., Levels of naturally occuring DNA polymorphism correlate with recombination rates in D. melanogaster, Natur. 356 (1992) 519–20.

    Article  CAS  Google Scholar 

  4. Bossart J.L., Pashley Prowell D., Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol. Evol. 13 (1998) 202–206.

    Article  CAS  Google Scholar 

  5. Bowers D.M., Chemistry and coevolution: iridoids glycoside, plants, and herbivorous insects, in: K. Spencer (ed.), Chemical mediation of coevolution, Academic Press, New York, 1988, pp. 133–165.

    Chapter  Google Scholar 

  6. Braconnot S., Structure génétique de Parnassius apollo Linné (Lepidoptera Pa-pilionidae) en France: étude du polymorphisme enzymatique, Thèse, Université de Provence, (1997).

    Google Scholar 

  7. Britten H.B., Brussard P.F., Murphy D.D., Ehrlich P.R., A test for isolation-by-distance in central Rocky Mountain and Great Basin populations of Edith’s checkerspot butterfly (Euphydryas editha) J. Hered. 86 (1995) 204–210.

    Article  Google Scholar 

  8. Capdeville P., Les races géographiques de Parnassius apollo, Éditions Sciences Nat, Venette, 1978.

    Google Scholar 

  9. Cosson E., Étude sur la biologie, l’écologie et la répartition dans le Jura de Parnassius apollo L. (Lepidoptera: Papilionidae), Mémoire de D.E.A., Université de Provence, 1995.

    Google Scholar 

  10. Deschamps-Cottin M., Roux M., Descimon H., Valeur trophique des plantes nourricières et préférence de ponte chez Parnassius apollo L. (Lepidoptera, Papilionidae), CR. Acad. Sei. Pari. 320 (1997) 399–406.

    Google Scholar 

  11. Descimon H., La pigmentation des lépidoptères: un modèle pour la théorie synthétique de l’évolution, Bull. Soc. Zool. Pr. 108 (1983) 303–312.

    CAS  Google Scholar 

  12. Descimon H., La conservation des Parnassius en France: aspects zoogéographiques, écologiques, démographiques et génétiques, Insectes (Suppl.), 1994.

    Google Scholar 

  13. Descimon H., Vesco J.P., A mutant affecting wing pattern in Parnassius apollo (Linné), J. Res. Lepidopter. 26 (1988) 161–72.

    Google Scholar 

  14. Descimon H., Napolitano M., Enzyme polymorphism, wing pattern variability and geographical isolation in an endangered butterfly species, Biol. Cons. 66 (1993) 117–23.

    Article  Google Scholar 

  15. Descimon H., Napolitano M., Genetic structure of French populations of the mountain butterfly Parnassius mnemosyne L. (Lepidoptera: Papilionidae), Biol. J. Linn. Soc. 53 (1994) 325–41.

    Article  Google Scholar 

  16. Ehrlich P., Ehrlich, P.R., Intrinsic barriers to dispersal in Checkerspot butterfly. Scienc. 134 (1961) 108–109.

    CAS  Google Scholar 

  17. Ehrlich P.R., Raven P.H., The differentiation of populations, Scienc. 165 (1969) 1128–32.

    Google Scholar 

  18. Ehrlich, P.R., The structure and dynamics of butterfly populations, In: Vane-Wright, R.I., Ackery, P.R. (eds.), The Biology of Butterflies, Symposium 11 of the Royal Entomological Society, Academic Press, London, 1984, pp. 25–40.

    Google Scholar 

  19. Feder L.D., Berlocher S.H., Opp S.B., Sympatric host-race formation and spe-ciation in Rhagoletis (Diptera: Tephritidae): a tale of two species for Charles D., in: Mopper S. and Stauss S.Y. (eds), Genetic structure and local adaptation in natural populations, Chapman and Hall, London and New York, 1997, pp. 408–441.

    Google Scholar 

  20. Ford E.B., Butterflies, Collins, London, 1945.

    Google Scholar 

  21. Gilpin M., The genetic effective size of a metapopulation, Biol. J. Linn. Soc. 42 (1991) 165–175.

    Article  Google Scholar 

  22. Godelle B., Austerlitz F., Brachet S., Colas B., Cuguen J., Gandon S., Gouyon P.H., Lefranc M., Olivieri I., Reboud X., Vitalis R., Système génétique, polymorphisme neutre et sélectionné: implications en biologie de la conservation, Genet. Select. Evol. 30 (Suppl. 1) (1998), S15–S28.

    Article  Google Scholar 

  23. Guinand B., Use of a multivariate model using allele frequency distributions to analyse patterns of genetic differentiation among populations, Biol. J. Linn. Soc. 58 (1996) 173–195.

    Article  Google Scholar 

  24. Hanski H., Metapopulation Ecology, Oxford University Press, Oxford, 1999.

    Google Scholar 

  25. Hanski I., Kuussaari M., Nieminen, M., Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecolog. 75 (1994) 747–762.

    Google Scholar 

  26. Hanski I., Pakkala T., Kuussaari M., Lei, G.C., Metapopulation persistence of an endangered butterfly in a fragmented landscape, Oiko. 72 (1995) 21–28.

    Article  Google Scholar 

  27. Harrison S., Local extinction in a metapopulation context: an empirical evaluation, Biol. J. Linn. Soc. 42 (1991) 73–88.

    Article  Google Scholar 

  28. Hewitt G.M., Post-glacial recolonization of European biota, Biol. J. Linn. Soc. 68 (1999) 87–112.

    Article  Google Scholar 

  29. Hillis D.M., Moritz C., Mable B.K., Molecular systematics, 2nd edition, Sinauer, Sunderland, Mass., 1996.

    Google Scholar 

  30. Ibrahim K., Nichols R.A. Hewitt G.A., Spatial patterns of genetic variation generated by different forms of dispersal during range expansion, Heredit. 77 (1996) 282–291.

    Google Scholar 

  31. Legendre P., Legendre L., Numerical Ecology, Elsevier, Amsterdam, 1998.

    Google Scholar 

  32. Lesse H. de, 1951, Etude biométrique des formes d’Erebia epiphron (Knoch), des Vosges, d’Auvergne et des Pyrénées, Rev. Fr. Lépidoptérologi. 13 (1951) 3–9.

    Google Scholar 

  33. Levins R., Extinction, in: Gerstenhaber, M. (ed.), Some Mathematical Questions in Biology. Lectures on Mathematics in the Life Sciences. Vol. 2., American Mathematical Society, Providence (R.I.), 1970, PP- 77–107.

    Google Scholar 

  34. Lewontin R.C., The Genetic Basis of Evolutionary Change, Columbia University Press, New York, 1974).

    Google Scholar 

  35. Mazel R., Structure et évolution du peuplement d’Euphydryas aurinia Rottem-burg (Lepidoptera) dans le sud-ouest européen, Vie Milie. 36 (1986), 205–225.

    Google Scholar 

  36. Meglécz E., Solignac M., Microsatellite loci for Parnassius mnemosyne (Lepidoptera), Heredita. 128 (1998) 179–180.

    Google Scholar 

  37. Nève G., Dispersion chez une espèce à habitat fragmenté: Proclossiana eunomia (Lepidoptera, Nymphalidae), Dissertation doctorale, Université catholique de Louvain, 1996.

    Google Scholar 

  38. Nève G., Meglécz E., Microsatellite frequencies in different taxa, Trends Ecol. Evol. 15 (2000) 376–377.

    Article  Google Scholar 

  39. Nève G., Barascud B., Windig J.J., Population biology of Proclossiana eunomia (Nymphalidae): Preliminary results on morphometric and allozyme variation in Belgian and French populations, Nota Lepidopterologica, suppl. 5 (1994) 3–12.

    Google Scholar 

  40. Nève G., Barascud B., Hughes R., Baguette M., Aubert J., Descimon H., Lebrun P., Dispersai, colonisation power and metapopulation structure in the vulnerable butterfly Proclossiana eunomia (Lepidoptera, Nymphalidae). J. Appl. Ecol. 33 (1996) 14–22.

    Article  Google Scholar 

  41. Nève G., Mousson L., Baguette M., Adult dispersal and genetic structure of butterfly populations in a fragmented landscape. Acta cecol. 17 (1996) 621–626.

    Google Scholar 

  42. Nève G., Barascud B., Descimon H., Baguette M., Genetic structure of Proclos- siana eunomia populations at the regional scale (Lepidoptera, Nymphalidae), Heredit. 84 (2000) 657–666.

    Article  Google Scholar 

  43. Parmesan C., Ryrholm N., Stefanescu C., Hill J.K, Thomas C.D., Descimon H., Huntley B., Kaila L., Kullberg J., Tammaru T., Tennent J., Thomas J.A., Warren, M., Poleward shifts in geographical ranges of butterfly species associated with regional warming, Natur. 399 (1999) 579–83.

    CAS  Google Scholar 

  44. Raymond M., Rousset F., GENEPOP (ver. 1.2), a population genetics software for exact tests and ecumenicism, J. Hered. 86 (1995) 248–249.

    Article  Google Scholar 

  45. Singer M.C., Thomas C.D., Evolutionary responses of a butterfly metapopulation to human- and climate-caused environmental variation, Am. Nat. 148 (supplement) (1996) 9–39.

    Google Scholar 

  46. Slatkin M., Isolation by distance in equilibrium and non-equilibrium populations. Evolutio. 47 (1993) 264–279.

    Google Scholar 

  47. Solignac M., Périquet G., Anxolabéhère D., Petit C., Génétique et évolution, tome I, Hermann, Paris, 1995.

    Google Scholar 

  48. Sokal R.R., Oden N.L., Spatial autocorrelation analysis as an inferential tooi in population genetics. Am. Nat. 138 (1991) 518–521.

    Article  Google Scholar 

  49. Swofford D.L., Selander R.B., Biosys-1: a Fortran program for the comprehen- sive analysis of electrophoretic data in population genetics and systematics, J. Hered. 72 (1981) 281–283.

    Article  Google Scholar 

  50. Watt W.B., Cassin R.C., Swan M.S., Adaptation at specific loci. III. Field beha- viour and survivorship differences among Colias PGI genotypes are predictable from in vitro biochemistry, Genetic. 103 (1983) 725–739.

    CAS  Google Scholar 

  51. Watt W.B., Biochemistry, physiological ecology, and population genetics - the mechanistic tools of evolutionary biology, Funct. Ecol. 5 (1991) 145–154.

    Article  CAS  Google Scholar 

  52. Weir B.S., Cockerham C.C., Estimating F-statistics for the analysis of population structure, Evolutio. 38 (1984) 1358–1370.

    CAS  Google Scholar 

  53. Whitlock, M.C., McCauley, D.E., Indirect measures of gene flow and migration: FST # 1 / (4Nm + 1), Heredit. 82 (1999) 117–125.

    Google Scholar 

  54. Wright S., Isolation by distance, Genetic. 16 (1943) 114–138.

    Google Scholar 

  55. Wright S., The genetical structure of populations, Ann. Eugen. 15 (1951) 323–54.

    Article  CAS  Google Scholar 

  56. Wright S., Evolution and the Genetics of Populations, Vol. 4, Variability within and among Natural Populations, University of Chicago Press, Chicago, 1978.

    Google Scholar 

  57. Wynne I.R., Loxdale H.D., Brookes C.P. Use of cellulose acetate system for allozyme electrophoresis, in: Berry R.J., Bradshaw A.D., Crowford T. (eds.), Genes in Ecology, Blackwell, Oxford, 1992, pp. 494–499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Descimon.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Descimon, H., Zimmermann, M., Cosson, E. et al. Diversité génétique, variation géographique et flux géniques chez quelques lépidoptères rhopalocères français. Genet Sel Evol 33 (Suppl 1), S223 (2001). https://doi.org/10.1186/BF03500882

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/BF03500882

Keywords

Mots clés