Skip to main content
  • III — Méthodes D’inventaire et de Caractérisation de la Diversité Génétique en Milieu Naturel / Methods for Inventory and Characterization of Genetic Diversity in Natural Environment
  • Open access
  • Published:

Olive domestication from structure of oleasters and cultivars using nuclear RAPDs and mitochondrial RFLPs

Domestication de l’olivier d’après la structure des cultivars et des oléastres basée sur les marqueurs nucléaires RAPD et les RFLP de l’ADN mitochondrial

Abstract

RAPD profiles of 121 olive cultivars were compared to those of 20 natural oleaster populations from eastern and western parts of the Mediterranean Basin. Considering the proximities of RAPD profiles between cultivars and eastern or western oleaster populations, clear differences appeared between groups of cultivars. Cultivars from Israel, Turkey, Syria, Greece and Sicily were, with very few exceptions, close to the eastern group of oleasters; in contrast, clones from Continental Italy, Continental France, Corsica, Spain and the Maghreb were closer to the western group. This genetic structure is coherent with a local selection of cultivars all around the Mediterranean Basin. The cultivars were also characterised for their mitochondrial cytotype. This information led to the conclusion that a great majority (103 of 121) of the cultivars originated by maternal descent from the eastern populations as they carry the mitotypes ME1 or ME2. However, the selection process, which involved hybridisation by pollen from local populations, could have led to an RAPD profile closer to western than to eastern natural populations. Furthermore, the other cultivars with the western mitotypes MOM or MCK generally kept a nuclear RAPD profile close to the profile of western natural populations. Consequently, they could result from exclusively local material (as for Corsica). Cultivars displaying such mitotypes could also have been selected in hybrids or introgressed genotypes between western local oleasters and the introduced eastern varieties used as male parents, restoring an eastern RAPD type. Therefore, the process of olive domestication appeared as disymmetrical: the western Mediterranean is probably a zone where olive trees from the East, once introduced, have been hybridised and back-crossed with the indigenous olives.

Résumé

Les profils RAPD de 121 cultivars d’olivier ont été comparés à ceux de 20 populations naturelles d’oléastres de l’Est et de l’Ouest de la Méditerranée. En considérant les proximités des profils RAPD entre les cultivars de l’Est et de l’Ouest et les populations, des différences nettes apparaissent entre les groupes de cultivars. Les cultivars d’Israël, Turquie, Syrie, Grèce et Sicile sont, avec peu d’exceptions, proches des oléastres de l’Est; à l’opposé les clones d’Italie continentale, de France continentale de Corse, d’Espagne et du Maghreb sont proches des oléastres de l’Ouest. Cette structure génétique est cohérente avec une sélection locale des cultivars tout autour du Bassin Méditerranéen. Les cultivars ont aussi été caractérisés par le cytotype mitochondrial. Cette information montre que la grande majorité (103 sur 121) des cultivars porte les mitotypes ME1 ou ME2, et aurait donc une origine maternelle dans les populations de l’Est. Cependant, le processus de sélection qui implique l’hybridation par le pollen des populations locales, pourrait mener à avoir un profil RAPD plus proche des populations de l’Ouest que des populations naturelles de l’Est. En outre, les autres cultivars avec les mitotypes de l’Ouest MOM ou M CK, ont généralement conservé un profil RAPD proche des populations naturelles de l’Ouest. En conséquence, elles pourraient résulter de formes exclusivement locales (comme en Corse). Cependant, les cultivars qui portent de tels mitotypes pourraient aussi avoir été sélectionnés à partir d’hybrides ou de génotypes introgressés entre les oléastres de l’Ouest et les variétés, introduites de l’Est, utilisées comme parent mâle, conduisant à un profil RAPD de l’Est. Le processus de domestication de l’olivier apparaît dissymétrique: la Méditerranée de l’Ouest serait une zone où les oliviers de l’Est, une fois introduits, aurait été hybridés et rétro-croisés avec les oliviers indigènes.

Abbreviations

ME1:

Mitotype “eastern Mediterranean n°l”

ME2:

Mitotype “eastern Mediterranean n°2”

MOM:

Mitotype “western Mediterranean”

MCK:

Mitotype characteristic of the cultivar Chemlal de Kabylie (western Mediterranean).

References

  1. Baradat P., Labbé T., OPEP: Un logiciel intégré pour l’amélioration des plantes pérennes, in: Traitements statistiques des essais de sélection. Stratégies de sélection des plantes pérennes, CIRAD-CP (Ed.), Montpellier, 1995, pp. 303–330.

    Google Scholar 

  2. Baruch IL, Bottema S., Palynological evidence for climatic changes in the Levant ca. 17,000-9,000 B.P., in The Natufian Culture in the L.v.n., Bar-Yosey O., Vall F. (Eds.), International Monographs in Prehistory, Ann Arbor, 1991, pp. 11–20.

    Google Scholar 

  3. Besnard G., Khadari B., Villemur P., Bervillé A., Cytoplasmic male sterility in the olive (Olea europaea L.), Theor. Appl. Genet. 100 (2000) 1018–1024.

    Article  Google Scholar 

  4. Besnard G., Bervillé A., Multiple origin of the Mediterranean olive deduced from mitochondrial DNA polymorphism. C. R. Acad. Sci. III 323 (2000) 173–181.

    Article  CAS  Google Scholar 

  5. Besnard G., Baradat P., Bervillé A., Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars, Theor. Appl. Genet. 102 (2001) 251–258.

    Article  CAS  Google Scholar 

  6. Besnard G., Baradat P., Chevalier D., Tagmount A., Bervillé A., Genetic differentiation in the olive (Olea europaea) complex revealed by RAPDs and RFLPs in the rRNA genes, Genet. Res. Crop Evol. 48 (2001) 165–182.

    Article  Google Scholar 

  7. Brun A., Microflores et Paléovégétations en Afrique du Nord depuis 30 000 ans, Bull. Soc. Géol. France 1 (1989) 25–33.

    Article  Google Scholar 

  8. Carrion J.S., Dupré M., Fumanal M.P., Montes R., A palaeoenvironmental study in semi-arid southeastern Spain: The palynological and sedimentological sequence at Perneras cave (Lorca, Murcia), J. Archaeol. Sci. 22 (1995) 355–367.

    Article  Google Scholar 

  9. Durham R.E., Korban S.S., Evidence of gene introgression in apple using RAPD markers, Euphytica 79 (1994) 109–114.

    Article  CAS  Google Scholar 

  10. Elant H., Olive, in Evolution of crop p.a.t., M.W. Simmonds Ed., Edinburgh, Scotland, 1976, pp. 219–221.

    Google Scholar 

  11. Follieri M., Magri D., Sadori L., 250,000-year pollen record from Valle di Cas-tiglione (Roma), Pollen Spores 30 (1988) 329–356.

    Google Scholar 

  12. Kato S., Ishikawa S., Imakawa S., Komori S., Mikami T., Shimamoto Y., Cytoplasmic relatedness of apple landraces and cultivars: a molecular analysis, Euphytica 66 (1993) 99–102.

    Google Scholar 

  13. Kelly M.G., Huntley B., An 11 000-year record of vegetation and environment from Lago di Martignano, Latium, Italy, J. Quat. Sci. 6 (1991) 209–224.

    Article  Google Scholar 

  14. Kislev M.E., Nadel D., Carmi L, Epipalaeolithic (19,000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel, Rev. Palaeobot. Palynol. 73 (1992) 161–166.

    Article  Google Scholar 

  15. Lashermes P., Andrzejewski S., Bertrand B., Combes M.C., Dussert S., Graziosi G., Trouslot, P., Anthony F., Molecular analysis of introgressive breeding in coffee (Coffea arabica L.), Theor. Appl. Genet. 100 (2000) 139–146.

    Article  CAS  Google Scholar 

  16. Lebart L., Morineau A., Piron M., Statistique exploratoire multidimensionnelle, 2nd edition, Paris, Dunod, 1997.

    Google Scholar 

  17. Lerceteau E., Robert T., Pétiard V., Crouzillat D., Evaluation of the extent of genetic variability among Theobroma cacao accessions using RAPD and RFLP markers, Theor. Appl. Genet. 95 (1997) 10–19.

    Article  CAS  Google Scholar 

  18. Lumaret R., Ouazzani N., Michaud H., Villemur P., Cultivated olive and oleaster: two very closely connected partners of the same species (Olea europaea). Evidence from enzyme polymorphism, Bocconea 7 (1997) 39–42.

    Google Scholar 

  19. Magri D., Late Quaternary vegetation history at Lagaccione near Lagi di Bolsena (central I.a.y., Rev. Palaeobot. Palynol. 106 (1999) 171–208.

    Article  Google Scholar 

  20. Magri D., Sadori L., Late Pleistocene and Holocene pollen stratigraphy at Lago di Vico (central I.a.y., Veg. Hist. Archaeobot. 8 (1999) 247–260.

    Article  Google Scholar 

  21. Pérez-Obiol R., Julià R., Climate change on the Iberian Peninsula recorded in a 30,000-Yr pollen record from Lake Banyoles, Quat. Res. 41 (1994) 91–98.

    Article  Google Scholar 

  22. Pons A., Reille M., The Holocene- and upper Pleistocene pollen record from Padul (Granada, Spain): a new study, Palaeogeogr. Palaeoclimatol. Palaeoecol. 66 (1988) 243–263.

    Article  Google Scholar 

  23. Quillet M.C., Madjidian N., Griveau Y., Serieys H., Tersac M., Lorieux M., Bervillé A., Mapping of genetic factors controlling pollen viability in an interspecific cross in Helianthus sect. Helianthus, Theor. Appl. Genet. 91 (1995) 1195–1202.

    Article  CAS  Google Scholar 

  24. Riera-Mora S., Esteban-Amat A., Vegetation history and human activity during the last 6000 years on the central Catalan coast (northeastern Iberian Peninsula), Veget. Hist. Archaeobot. 3 (1994) 7–23.

    Article  Google Scholar 

  25. Saporta G., Probabilité, Analyse des Données et Statistique, Paris, Technip, 1990.

    Google Scholar 

  26. Solari M.E., Vernet J.L., Late glacial and Holocene vegetation of the Corbières based on charcoal analysis at the Cova de L’Espérit (Salses, Pyrénées Orientales, Prance), Rev. Paleobot. Palynol. 71 (1992) 111–120.

    Article  Google Scholar 

  27. Taberlet P., Fumagalli L., Wust-Saucy A.G., Cosson J.F., Comparative phylo-geography and postglacial colonization routes in E.r.p., Mol. Ecol. 7 (1998) 453–464.

    Article  CAS  Google Scholar 

  28. Terral J.F., La domestication de l’olivier (Olea europaea L.) en Méditerranée nord-occidentale: Approche morphométrique et implications paléoclimatiques, Thèse, Université Montpellier II, France, 1997.

    Google Scholar 

  29. Terral J.F., Arnold-Simard G., Beginnings of olive cultivation in eastern Spain in relation to Holocene bioclimatic changes, Quat. Res. 46 (1996) 176–185.

    Article  Google Scholar 

  30. Van Zeist W., Woldring H., Holocene vegetation and climate of Northwestern Syria, Palaeohistoria 22 (1980) 111–125.

    Google Scholar 

  31. Watts W.A., Allen J.R.M., Huntley B., Vegetation history and palaeoclimate of the last glacial period at Lago Grande di Monticchio, Southern Italy, Quat. Sci. Rev. 15 (1996) 133–153.

    Article  Google Scholar 

  32. Yll E.I., Perez-Obiol R., Pantaleon-Cano J., Roure J.M., Palynological evidence for climatic change and human activity during Holocene on Minorca (Balearic Islands), Quat. Res. 48 (1997) 339–347.

    Article  Google Scholar 

  33. Zohary D., Hopf M., Domestication of plants in the Old World, 2nd edition, Oxford Clarendon Press, 1994, pp. 137–142.

    Google Scholar 

  34. Zohary D., Spiegel-Roy P., Beginnings of fruit growing in the Old World, Science 187 (1975) 319–327.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Bervillé.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Besnard, G., Baradat, P., Breton, C. et al. Olive domestication from structure of oleasters and cultivars using nuclear RAPDs and mitochondrial RFLPs. Genet Sel Evol 33 (Suppl 1), S251 (2001). https://doi.org/10.1186/BF03500883

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/BF03500883

Keywords

Mots clés