Skip to main content
  • III — Méthodes D’inventaire et de Caractérisation de la Diversité Génétique en Milieu Naturel / Methods for Inventory and Characterization of Genetic Diversity in Natural Environment
  • Open access
  • Published:

Use of RFLP markers to study genetic diversity and to build a core-collection of the wild wheat relative Ae. geniculata Roth (= Ae. ovata L.)

Utilisation de marqueurs RFLP pour l’étude de la diversité génétique et l’établissement d’une core collection d’Ae. geniculata Roth (= Ae. ovata L.)

Abstract

The wild wheat relative Ae. geniculata Roth (= Ae. ovata L.) is a preferentially seifing, allo-tetraploid species (MU genome) widely distributed around the Mediterranean Basin. Two hundred and two individuals belonging to one hundred and fifty one populations originating from different eco-geographical regions were used to study its genetic diversity. The diversity was revealed on Restriction Fragment Length Polymorphisms (RFLP). Nine clones mapped on the Triticeae group 2 chromosome consensus map were used as probes. The genetic variability was found to be highly structured. A fine scale study performed on populations from Bulgaria, France and Morocco suggested that 52% of the diversity was explained by differences among populations within regions. A Factorial Analysis of Correspondence (FAC) distinguished two main structures corresponding mainly to the North and South of the Mediterranean Sea. Differences among close regions separated by natural barriers were also found. Hypotheses concerning the dissemination of Ae. geniculata around the Mediterranean Sea are presented and examined. In order to improve the management of Ae. geniculata genetic resources, a methodology for core collection sampling is presented and the efficiency of RFLP markers in building this collection is discussed.

Résumé

Ae. geniculata Roth (= Ae. ovata L.) est une espèce apparentée au blé, allotétraploïde (de génome MU), à l’autogamie prépondérante, largement distribuée sur le pourtour du Bassin Méditerranéen. Deux cent deux individus, appartenant à cent cinquante et une populations originaires de différentes régions éco-géographiques, ont été utilisés pour étudier la diversité génétique de l’espèce. L’étude a été basée sur le polymorphisme de longueur des fragments de restriction (Restriction Fragments Length Polymorphism, RFLP). Neuf clones, cartographiés sur le chromosome 2 de la carte consensus des Triticeae, ont été utilisés comme sondes. La variabilité génétique de cette espèce s’est révélée très structurée entre populations. Une étude à petite échelle, réalisée sur des populations de Bulgarie, France et Maroc, a suggéré que 52% de la diversité s’expliquait par des différences entre populations à l’intérieur des régions. Une Analyse Factorielle des Correspondances (AFC) a permis de distinguer deux structures principales, correspondant au nord et au sud de la Méditerranée. Des différences ont également été notées entre régions proches séparées par des barrières naturelles. Des hypothèses concernant la diffusion d’ie. geniculata autour de la Méditerranée sont présentées et examinées. Afin d’améliorer la gestion des ressources génétiques d’Ae. geniculata, une méthodologie d’établissement d’une core-collection est étudiée, et l’efficacité des marqueurs RFLP pour la construction de cette collection est discutée.

References

  1. Adams J.M., Faure H. QEN members, Review and Atlas of Palaeovegetation: Preliminary land ecosystem maps of the world since the Last Glacial Maximum. Adams J.M., Faure H (eds.) Oak Ridge National Laboratory, USA, 1997, https://doi.org/www.esd.ornl.gov/ern/qen/adams1.html.

    Google Scholar 

  2. Bataillon T., David J.L., Schoen D.J., Neutral genetic markers and conservation: simulated germplasm collections, Genetics 144 (1996) 409–417.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Benlhabib O., Hmoud R., El Khlifi O., Nachit M., Baum M., Sharma H., Zaharieva M., Croisements interspécifiques pour l’élargissement de la diversité génétique des blés au Maroc, in: Birouk A, Rejdali M. (eds.), Ressources phytogénétiques et développement durable, Rabat, Maroc, 1997, pp. 183–186.

    Google Scholar 

  4. Brown A.H.D., The core collection at the crossroads, in: Hodgkin T., Brown A.H.D., Van Hintum T.J.L, Morales E.A.V. (Eds.), Core collection of plant genetic resources, IPGRI, John Wiley and Sons, UK, 1995.

    Google Scholar 

  5. Church G.M., Gilbert W., Genomic sequencing. Proc. Natl. Acad. Sci USA 81 (1984) 1991–1995.

    Article  CAS  Google Scholar 

  6. Dimov A., Zaharieva M., Mihova S., Rust and powdery mildew resistance in Aegilops accessions from Bulgaria, in: Damania A.B. (Ed.), Biodiversity and wheat improvement, John Wiley and Sons, London, 1993, pp. 165–169.

    Google Scholar 

  7. Dumolin-Lapègue S., Demesure B., Fineschi S., Le Corre V., Petit R.J., Phylogeographic structure of white oaks throughout the European continent, Genetics 146 (1997) 1475–1487.

    PubMed  PubMed Central  Google Scholar 

  8. Farooq S., Shah T.M., Asghar M., Intergeneric hybridization for wheat improvement: V. Production of and metaphase 1 chromosome analysis in Fl hybrids of wheat (Triticum aestivum) with Aegilops ovata L., Cereal Res. Com. 24 (1996) 155–161.

    Google Scholar 

  9. Frankel O.H., Genetic perspectives of germplasm conservation, in: Arber M., Llimensee W.K., Peacock W.J., Starlinger P. (Eds.), Genetic manipulation: Impact on Man and Society, Cambridge University Press, Cambridge, UK, 1984, pp. 173–196.

    Google Scholar 

  10. Priebe B., Jiang J., Raup W.J., Mcintosh R.A., Gill B.S., Characterization of wheat alien translocations conferring resistance to diseases and pests: current s.a.u., Euphytica 91 (1996) 58–87.

    Google Scholar 

  11. Gill B.S., Sharma H.C., Raupp W.J., Browder L.E., Hatchett J.H., Harvey T.L., Moseman J.G., Waines J.G., Evaluation of Aegilops species for resistance to wheat powdery m.l.e., wheat leaf rust, Hessian fly and greenbug, Plant Dis. 69 (1985) 314–316.

    Google Scholar 

  12. Gouesnard B., Bataillon T.M., Decoux G., Rozale C., Schoen D.J., David J.L., MSTRAT: an algorithm for building core collections by Maximizing Allelic or pherotypic richness, J. Hered. 92 (2001) 93–94.

    CAS  PubMed  Google Scholar 

  13. Hammer K., Vorarbeiten zur Monographischen Darstellung von Wildpflanzensortimenten: Aegilops L., Kulturpflanze 28 (1980) 33–180.

    Article  Google Scholar 

  14. Hamrick J.L., Godt M.J.M., Effects of life history traits on genetic diversity in plant species, Philos. Trans. R. Soc. London 351 (1996) 1291–1298.

    Article  Google Scholar 

  15. Kimber G., Sallee P.J., Feiner M.M., The interspecific and evolutionary relationships of Triticum ovatum, Genome 30 (1988) 218–221.

    Article  Google Scholar 

  16. Ma Z.Q., Gill B.S., Sorrells M.E., Tanksley S.D., RFLP markers linked to two Hessian fly-resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (Coss.) Schmal, Theor. Appl. Genet. 85 (1993) 750–754.

    Article  CAS  Google Scholar 

  17. Mamluk, O.F., Van Slageren, M.W., Aegilops spp. as sources of resistance to wheat diseases, in: Birouk, A., Rejdali, M. (Eds.), Ressources Phytogénétiques et Développement Durable, Actes, Rabat, Maroc, 1997, pp. 197–202.

    Google Scholar 

  18. Monestiez P., Goulard M., Charmet G., Geostatistics for spatial genetic structures: study of wild populations of perennials ryegrass, Theor. Appl. Genet. 88 (1994) 33–41.

    Article  CAS  Google Scholar 

  19. Nesbitt M., Samuel D., Prom staple crops to extinction. The archaeology and history of the hulled w.e.t., in: Padulosi S., Hammer K., Heller J. (Eds.), Hulled wheats, Proceedings of the First International Workshop on Hulled w.e.t., Castelvecchio Pascoli, Tuscany, Italy, 1995, pp. 41–100.

    Google Scholar 

  20. Nevo E., Noy-Meyer I., Beiles A., Krugman T., Agami M., Natural selection of allozyme polymorphisms: micro-geographic spatial and temporal ecological differentiations in wild emmer wheat, Isr. J. Bot. 40 (1991) 419–449.

    CAS  Google Scholar 

  21. SAS®, Stat User’s guide. Release 6.03 Edition, SAS Institute Inc, Cary, NC, USA, 1988

    Google Scholar 

  22. Schoen D.J., Brown A.H.D., Maximising genetic diversity in core collections of wild relatives of crop species, in: Core collection: improving the management and the use of the plant germplasm collections, Workshop IBPGR/CGN/CENARGEN, Brasilia, 1994.

    Google Scholar 

  23. Taberlet P., Fumagalli L., Wust-Saucy A.G., Cosson J.-F. Comparative phylogeography and postglacial colonization routes in E.r.p., Mol. Ecol. 7 (1998) 453–464.

    Article  CAS  Google Scholar 

  24. Tai T.H., Tanksley S.D., A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol. Biol. Rep. 8 (1990) 297–303.

    Article  Google Scholar 

  25. Valkoun J., Hammer K., Kucerova D., Bartos P., Disease resistance in the genus Aegilops L. Stem rust, leaf rust, stripe rust, and powdery m.l.e., Kulturpflanze 33 (1985) 133–153.

    Article  Google Scholar 

  26. Van Dijk P., Bakx-Schotman T., Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago m.d.a., Mol. Ecol. 6 (1997) 345–352.

    Article  Google Scholar 

  27. Van Slageren M.W., Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach) Eig (Poaceae), Wageningen, Agricultural University - Aleppo, International Center for Agricultural Research in Dry Areas, 1994.

    Google Scholar 

  28. Wackernagel H., Multivariate geostatistics: An introduction with applications, Springer Verlag Berlin Heidelberg, 1995.

    Book  Google Scholar 

  29. Wang G. Z., Miyashita N.T., Tsunewaki K., Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc. Nat. Acad. Sci. USA 94 (1997) 14570–14577.

    Article  CAS  Google Scholar 

  30. Weir B.S., Genetic Data Analysis II. Methods for discrete population genetic data. Sinauer Associates, Sunderland, 1996, pp. 183–185.

    Google Scholar 

  31. Zaharieva M., Aegilops species in Bulgaria. Their ecogeography and distribution. In: Damania A.B. (Ed.), Biodiversity and Wheat Improvement, John Wiley and Sons, Chichester, UK, 1993, pp. 369–374.

    Google Scholar 

  32. Zaharieva M., David J., This D., Monneveux P., Analyse de la diversité génétique d’Ae. geniculata Roth en Bulgarie, Cah. Agric. 8 (1999) 181–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques David.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Zaharleva, M., Santoni, S. & David, J. Use of RFLP markers to study genetic diversity and to build a core-collection of the wild wheat relative Ae. geniculata Roth (= Ae. ovata L.). Genet Sel Evol 33 (Suppl 1), S269 (2001). https://doi.org/10.1186/BF03500884

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/BF03500884

Keywords

Mots clés