Skip to main content
  • V — Gestion Dynamique des Ressources Génétiques Dynamic Management of Genetic Resources
  • Open access
  • Published:

Mitochondrial DNA diversity and phenotypic variation in wild and cultivated populations of Medicago sativa: insights into the dynamics of contact zones between the two related forms

Diversité mitochondriale et variation phénotypique dans des populations sauvages et cultivées de Medicago sativa: inférences sur la dynamique des zones de contact entre les deux formes apparentées

Abstract

In order to understand the dynamics of contact zones between natural and cultivated populations of alfalfa (Medicago sativa L.) in Spain, we investigated the patterns of mitochondrial variation (characterized through restriction fragment length polymorphisms) for 173 individuals in four natural and four cultivated populations of this species. We also examined the relationship between mtDNA and phenotypic variation. This study shows that cytoplasmic variation occurs in both natural and cultivated populations of Medicago sativa. Among the five mitotypes identified in the species, two are specific from the natural populations. The distribution of shared mitotypes between wild and cultivated forms attested to the occurrence of gene flow through seed from cultivated towards natural populations. Comparisons between cytoplasmic and phenotypic patterns of variation give information on the patterns of gene exchange that occur in contact zones over successive generations.

Résumé

Pour comprendre la dynamique de zones de contact entre des populations naturelles et cultivées de luzerne (Medicago sativa L.) en Espagne, nous avons étudié l’organisation de la diversité mitochondriale au sein de quatre populations naturelles et quatre populations cultivées, et examiné les relations entre variabilité mitochondriale et phénotypique. La diversité mitochondriale a été caractérisée par hybridation de séquences mitochondriales sur l’ADN total. Cette étude montre qu’il existe un polymorphisme cytoplasmique au sein des populations naturelles et cultivées de Medicago sativa. Cinq mitotypes ont été identifiés dont deux sont spécifiques des populations naturelles. Les trois mitotypes du compartiment cultivé, présents en fréquences variables dans le compartiment sauvage, attestent de l’existence de flux de graines des populations cultivées vers les populations sauvages. La comparaison de la variation mitochondriale et phénotypique nous permet de faire des inférences sur les échanges géniques en jeu dans les zones de contact au cours des générations successives.

References

  1. Ando S., Saeko M., Takahashi C., Shimizu T., Intravarietal differences in Mitochondrial DNAs of Alfalfa (Medicago sativa L.), Breed. Sci. 45 (1995) 227–228.

    Google Scholar 

  2. Arnold J., Cytonuclear disequilibria in hybrid zones, Ann. Rev. Ecol. Syst. 24 (1993) 521–554.

    Article  Google Scholar 

  3. Barton N.H., Hewitt G.M., Analysis of hybrid zones, Ann. Rev. Ecol. Syst. 16 (1985) 113–148.

    Article  Google Scholar 

  4. Church M.G., and Gilbert W., Genomic sequencing, Proc. Natl. Acad. Sci. USA 81 (1984) 1991–1995.

    Article  CAS  Google Scholar 

  5. Couvet D., Atlan A., Belhassen E., Gliddon C.J., Gouyon P.H., Kjellberg F., Coevolution between two symbionts: the case of cytoplasmic male sterility in higher plants, Oxf. Surv. Evol. Biol. 7 (1991) 225–249.

    Google Scholar 

  6. Cruzan M.B., Arnold M.L., Ecological and genetic associations in an Iris Hybrid zone, Evolution 47 (1993) 1432–1445.

    Google Scholar 

  7. Desplanques B., Betteraves mauvaises herbes et rudérales: diversité génétique, traits d’histoire de vie et flux de gènes au sein du complexe d’espèces cultivées-sauvages Beta vulgaris ssp., thèse de l’Université Lille I (1999) 71 p.

    Google Scholar 

  8. Dewey R.E., Levings C.S. 3d, Timothy D.H., Nucleotide sequence of ATPase subunit 6 of Maize mitochondria, Plant Physiol. 79 (1985) 914–919.

    Article  CAS  Google Scholar 

  9. Doebley J., Mapping the genes that made maize, Trends Genet. 8 (1992) 302–307.

    Article  CAS  Google Scholar 

  10. Ellstrand N.C., Hoffman C.A., Hybridization as an avenue of escape for engineered genes, Bioscience 40 (1990) 438–442.

    Article  Google Scholar 

  11. Ellstrand N.C., Prentice H.C., Hancock J.F., Gene flow and introgression from domesticated plants into their wild relatives, Ann. Rev. Ecol. Syst. 30 (1999) 539–563.

    Article  Google Scholar 

  12. Ennos R.A., Estimating the relative rates of pollen and seed migration among plant populations, Heredity 72 (1994) 250–259.

    Google Scholar 

  13. Forsthoefel N.R., Bohnert H.J., Smith, S.E., Discordant inheritance of mitochondrial and plastid DNA in diverse alfalfa genotypes, J. Hered. 83 (1992) 342–345.

    Article  Google Scholar 

  14. Hanson M.R., Plant mitochondrial mutations and male sterility, Ann. Rev. Genet. 25 (1991) 464–486.

    Article  Google Scholar 

  15. Haouazine N., Pereira de Souza A., Jubier M.F., Lancelin D., Deicher E., Lejeune B., The wheat mitochondrial genome contains an ORF showing sequence homology to the gene encoding the subunit 6 of the NADH-ubiquinone oxidoreductase, Plant. Mol. Biol. 20 (1992) 395–404

    Article  CAS  Google Scholar 

  16. Hewitt, G.M., Hybrid zones: natural laboratories for evolutionary studies, Trends Ecol. Evolut. 3 (1988) 158–167.

    Article  CAS  Google Scholar 

  17. Hiesel R., Schobel W., Schuster W., Brennicke A., The cytochrome oxidase sub-unit I and subunit III genes in Oenothera mitochondria are transcribed from identical promoter sequences, EMBO J. 6 (1987) 29–34

    Article  CAS  Google Scholar 

  18. Howard D.J., Reinforcement: Origins, dynamics and fate of an evolutionary hypothesis, in: Harrison, R.G. (ed.), Hybrid zones and the Evolutionary process, Oxford University Press, NY, 1993, pp. 46–69.

  19. Jenczewski E., Angevain M., Charrier A., Génier G., Ronfort J., Prosperi J-M., Contrasting patterns of genetic diversity in neutral markers and agromorpholog-ical traits in wild and cultivated populations of Medicago sativa L. from Spain, Genet. Select. Evol. 30 (1998) S103–S121.

    Article  Google Scholar 

  20. Jenczewski E., Prosperi J.M., Ronfort J., Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits, Am. J. Bot. 86 (1999) 677–687.

    Article  CAS  Google Scholar 

  21. Jenczewski E., Prosperi J.M., Ronfort J., Differentiation between natural and cultivated populations of Medicago sativa (Leguminosae) from Spain: analysis with random amplified polymorphic DNA (RAPD) markers and comparison to allozymes, Mol. Ecol. 8 (1999) 1317–1330.

    Article  CAS  Google Scholar 

  22. Lelandais C., Guttieres S., Mathie, C., Vedel F., Remacle C., Marechal-Drouard L., Brennicke A., Binder S., Chetrit P., A promoter element active in run-off transcription controls the expression of two cistrons of nad and rps genes in Nicotiana sylvestris mitochondria, Nucleic Acids Res. 24 (1996) 4798–4804.

    CAS  Google Scholar 

  23. Palmer J.D., Mitochondrial DNA in plant systematics: applications and limitations, in: Soltis, P.S., Soltis, D.E., Doyle, J.-J. (eds.) Molecular systematics of plants, Chapman & Hall, London, 1992, pp. 36–39.

    Chapter  Google Scholar 

  24. Petit R.J., Kremer A., Wagner D.B., Finite island model for organelle and nuclear genes in plants, Heredity 71 (1993) 630–641.

    Google Scholar 

  25. Prosperi J.M., Angevain M., Bonnin I., Chaulet E., Genier G. Jenczewski E. Olivieri I., Ronfort J., Genetic diversity, preservation and use of genetic resources of mediterranean legumes: Alfalfa and Medics, in: Génier G., Prosperi J.M. (eds.), Proceedings of the meeting of the Mediterranean Working Group on Medicago of the FAO/CIHEAM Inter-Regional Research and Development Network on Pastures and Fodder Crops, Hammamet (Tunisia), 19–22 October 1995, Cahiers Options Méditerranées Vol. 8: The Genus Medicago in the Mediterranean Region: Current situation and prospects in research, CIHEAM, Zaragoza, 1996 pp. 71–89.

    Google Scholar 

  26. Raymond M., Rousset F., An exact test for population differentiation, Evolution 49 (1995) 1280–1283.

    Google Scholar 

  27. Raymond M., Rousset F., GENEPOP (version 1.2): population genetics software for exact tests and ecumenism, J. Hered. 86 (1995) 248–249.

    Article  Google Scholar 

  28. Rieseberg L.H., Hybrid origin of plant species, Ann. Rev. Ecol. Syst. 28 (1997) 359–389.

    Article  Google Scholar 

  29. Rieseberg L.H., Wendel J.F., Introgression and its consequences in plants, in: Harrison, R.G. (ed.), Hybrid zones and the Evolutionary process, Oxford University Press, NY, 1993, pp. 70–110.

    Google Scholar 

  30. Rieseberg L.H., Whitton J., Gardner K., Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species, Genetics 152 (1999) 713–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. SAS® (Institute Inc., SAS/STAT User’s guide, version 6, 4th ed., SAS Institute, Cary, NC., 1989.

    Google Scholar 

  32. Small E., Hybridization in the domesticated weed-wild complex, in Grant, W.F. (ed.), Plant Biosystematics, Academic press, Toronto, 1984, pp. 195–210.

    Chapter  Google Scholar 

  33. Schuster W., Brennicke A., Pseudocopies of the ATPase a-subunit gene in Oenothera mitochondria are present on different circular molecules, Mol. Gen. Genet. 204 (1986) 29–35.

    Article  CAS  Google Scholar 

  34. Tai T.H., Tanksley S.D., A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue, Plant Mol. Biol. Rep. 8 (1990) 297–303.

    Article  Google Scholar 

  35. Van Raamsdonk L.W.D., Wild and cultivated plants: the parallelism between evolution and domestication, Evol. Trends Pl 7 (1995) 73–84.

    Google Scholar 

  36. Wissinger B., Schuster W., Brennicke A., Trans-splicing in Oenothera mitochondria: nad1 mRNAs are edited in exon and trans-splicing group II intron sequences, Cell 65 (1991) 473–482

    CAS  Google Scholar 

  37. Wolfe K.H., Li W.H., Sharp P.M., Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs, Proc. Natl. Acad. Sci. USA 84 (1987) 9054–9058.

    Article  CAS  Google Scholar 

  38. Wu J., Krutovskii K.V., Strauss S.H., Abundant mitochondrial genome diversity, population differentiation and convergent evolution in pines, Genetics 150 (1998) 1605–1614

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joëlle Ronfort.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Muller, MH., Balsera, C., Génier, G. et al. Mitochondrial DNA diversity and phenotypic variation in wild and cultivated populations of Medicago sativa: insights into the dynamics of contact zones between the two related forms. Genet Sel Evol 33 (Suppl 1), S381 (2001). https://doi.org/10.1186/BF03500891

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/BF03500891

Keywords

Mots clés