Skip to main content
  • V — Gestion Dynamique des Ressources Génétiques Dynamic Management of Genetic Resources
  • Open access
  • Published:

Evolution of genetic diversity in metapopulations: Arabidopsis thaliana as an experimental model

Évolution de la diversité génétique en métapopulation: Arabidopsis thaliana comme modèle expérimental

Abstract

Two experiments were set up to investigate how to maintain or create genetic diversity in artificial or managed populations of plants. Using Arabidopsis thaliana, we established 18 metapopulations of 20 populations each, all with the same initial genetic composition. We tested the effects of the population size, the artificial selection regime and the extinction/recolonisation regime. We report the results of the first four generations of evolution for a trait under selection (precocity) and for allozyme diversity. As expected, overall diversity decreased in each metapopulation, and differentiation among populations increased. As expected, the differentiation was weaker for larger population sizes and in the treatment with extinction and recolonisation with no bottleneck. Artificial selection was effective because the life cycle duration was much reduced. However, most of the reduction occurred during the first generation. We observed an increase of one allele at the LAP-2 locus in all metapopulations, breaching neutral assumptions for this locus. Finally, the selection regime made little difference for small population sizes, whereas large metapopulations were more differentiated when artificial selection was heterogeneous among populations. Altogether, our results agree with theoretical expectations, and provide some new results, which could not have been anticipated. In particular, the overall decrease in genetic diversity was very large (of the order of 20% in 4 generations) even for metapopulations of 2000 individuals.

Résumé

Deux expérimentations, visant à étudier comment maintenir ou créer de la diversité dans les populations artificielles ou gérées de plantes, ont été menées en utilisant Arabidopsis thaliana comme espèce modèle. Nous avons créé 18 métapopulations de 20 populations de même composition initiale. Nous avons testé les effets de la taille des populations, du régime de sélection et du régime d’extinction/recolonisation. Les résultats sur l’évolution du caractère sélectionné (durée du cycle de vie) et sur la diversité enzymatique sont présentés pour les quatre premières générations. Conformément aux attendus théoriques, la diversité a globalement diminué dans les métapopulations et les populations se sont différenciées. La différenciation est plus faible pour les grandes populations et dans le traitement avec extinctions et recolonisations sur une base génétique large. La sélection artificielle a réduit la durée du cycle des plantes. Cette réduction a essentiellement eu lieu pendant la première génération. Nous avons observé une augmentation d’un des allèles au locus LAP-2 dans toutes les métapopulations, en contradiction avec la neutralité présupposée de ce locus. Enfin, la sélection a eu peu d’effet dans les petites populations alors que les grandes populations sont plus différenciées pour les allozymes quand la sélection est hétérogène entre populations. Globalement, nos résultats sont plutôt en accord avec les prédictions théoriques; certains résultats sont néanmoins inattendus. En particulier, la perte de diversité globale a été très importante (de l’ordre de 20 % en quatre générations), même dans les métapopulations de 2000 individus.

References

  1. Allard R.W., The genetics of host-pathogen coevolution: implications for genetic resource conservation, J. Hered. 79 (1990) 225–238.

    Article  Google Scholar 

  2. Bartling D., Weiler E., Leucine aminopeptidase from Arabidopsis thaliana. Molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants, Eur. J. Biochem. 205 (1992) 425–31.

    Article  CAS  Google Scholar 

  3. Chauvel B., Gasquez J., Relationships between genetic polymorphism and herbicide resistance within Alopecurus myosuroides Huds, Heredity 72 (1994) 336–344.

    Google Scholar 

  4. Clegg M.T., Allard R.W., Viability versus fecundity selection in the slender wild oat, Arvena barbata L., Science 181 (1973) 667–668.

    CAS  Google Scholar 

  5. Crow J.F., Kimura M., An introduction to population genetics theory, Harper & Row, New-York, 1970.

    Google Scholar 

  6. David J.L., Pham J.L., Rapid changes in pollen production in experimental outcrossing populations of wheat, J. Evol. Biol. 6 (1993) 659–676.

    Article  Google Scholar 

  7. Enjalbert J., Goldringer I., David J., Brabant P., The relevance of outcrossing for the dynamic management of genetic resources in predominantly selfing Triticum aestivum L. (bread wheat), Genet. Select. Evol. 30 (1998) S197–S211.

    Article  Google Scholar 

  8. Farris M.A., Mitton J.B., Population density, outcrossing rate and heterozygote superiority in Ponderosa pine. Evolution 38 (1984) 1151–1154.

    Google Scholar 

  9. Frankel O.H., Brown A.H.D., Burdon J.J., The conservation of plant biodiversity, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  10. Frankham R.F., Effective population size/adult population size ratios in wildlife: a review, Genet. Res. 66 (1995) 95–107.

    Article  Google Scholar 

  11. Frankham R.F., Quantitative genetics in conservation biology, Genet. Res. 74 (1999) 237–244.

    Article  CAS  Google Scholar 

  12. Gandon S., Capowiez Y., Dubois Y., Michalakis Y., Olivieri I., Local adaptation and gene-for-gene coevolution in a metapopulation model, Proc. R. Soc. Lond. (Biol.) 263 (1996) 1003–1009.

    Article  Google Scholar 

  13. Gasquez J., Compoint J., Isoenzymatic variations in populations of Chenopodium album L. resistant and susceptible to triazines, Agro Ecosystems 7 (1981) 1–10.

    Article  CAS  Google Scholar 

  14. Godelle B., Austerlitz F., Brachet S., Colas B., Cuguen J., Gandon S., Gonyon P.-H., Lefranc M., Olivieri I., Reboud X., Vitalis R., The genetic system, selected genes and neutral polymorphism: Implications for conservation biology, Genet. Select. Evol. 30 (1998) S15–S28.

    Article  Google Scholar 

  15. Goudet J., Fstat version 1.2: a computer program to calculate Fstatistics, J. Hered. 86 (1995) 485–486.

    Article  Google Scholar 

  16. Hartl D.L., Clark A.G., Principles of population genetics, Sinauer Associates, Inc., 1989.

    Google Scholar 

  17. Hastings A., Harrison S., Metapopulation dynamics and genetics, Ann. Rev. Ecol. Syst. 25 (1994) 167–188.

    Article  Google Scholar 

  18. Henry J.P., Pontis C., David J.L., Gouyon P.H., An experiment on dynamic conservation of genetic resources with metapopulations, in: Seitz, A. and Loeschcke, V. (eds.), Species Conservation: A Populational-Biological Approach, Birkhaüser Verlag, Basel, 1991, pp. 185–198.

    Chapter  Google Scholar 

  19. Koehn R.K., Milkman R., Mitton J.B., Population genetics of marine Pelecy- pods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis, Evolution 30 (1976) 2–32.

    Google Scholar 

  20. Koornneef M., Alonso-Blanco C., Peeters A.J.M., Soppe W., Genetic control of flowering time in Arabidopsis thaliana, Annu. Rev. Plant Phys. 49 (1998) 345–370.

    Article  CAS  Google Scholar 

  21. Le Boulc’h V., Évolution de la résistance à l’oïdium (Erysiphe graminis) dans des populations de blé tendre (Triticum aestivum L.) menées en gestion dynamique, Thesis, Institut national agronomique Paris-Grignon, Paris, 1994.

    Google Scholar 

  22. Le Boulc’h V., David J.L., Brabant P., de Vallavieille-Pop C., Dynamic conservation of variability: responses of wheat populations to different selective forces including powdery mildew, Genet. Select. Evol. 26 (1994) 221s–240s.

    Article  Google Scholar 

  23. Levins R., Evolution in changing environments, Princeton University Press, Princeton, 1971.

    Google Scholar 

  24. Martinez-Zapater J.M., Coupland G., Dean C., Koornneef M., The transition to flowering in Arabidopsis, in: Meyerowitz, M.E. and Somerville, C.R. (eds.), Arabidopsis, Cold Spring Harbor, New York, 1994, pp. 403–433.

  25. McCauley D.E., Evolution in metapopulations with frequent local extinction and recolonization, Oxford Surv. Evol. Biol. 10 (1993) 109–134.

    Google Scholar 

  26. Mitchell-Olds T., Genetic constraints on life-history evolution: Quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana, Evolution 50 (1996) 140–145.

    Google Scholar 

  27. Mitton J.B., Koehn R.K., Genetic organization and adaptive response of allozymes to ecological variables in Fundulus heteroclitus, Genetics 79 (1975) 97–111.

    CAS  Google Scholar 

  28. Nei M., Molecular Evolutionary Genetics, Columbia University Press, New York, 1987.

    Book  Google Scholar 

  29. Ornstein P., Disc electrophoresis. I. Background and theory, Ann. N.Y. Acad. Sci. (1964) 321–347.

    Google Scholar 

  30. Paillard S., Goldringer L, Enjalbert J., Doussinault G., de Vallavieille-Pope C., Brabant P., Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic management. I. Is specific seedling resistance selected? Theor. Appl. Genet. 101 (2000) 449–456.

    CAS  Google Scholar 

  31. Paillard S., Goldringer L, Enjalbert J., Trottet M., David J., de Vallavieille-Pope C., Brabant P., Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic management. II. Adult plant resistance, Theor. Appl. Genet. 101 (2000) 457–462.

    Article  CAS  Google Scholar 

  32. Pasteur N., Pasteur G., Bonhomme F., Catalan J., Brutton-Davidian J., Manuel technique de génétique par électrophorèse de protéines, Lavoisier Tec. et Doc., Paris, 1987.

    Google Scholar 

  33. Pernès J., Gestion des ressources génétiques des plantes, Lavoisier, 1984.

    Google Scholar 

  34. Pigliucci M., Ecological and evolutionary genetics of Arabidopsis, Trends Plant Sci. 3 (1998) 485–489.

    Article  Google Scholar 

  35. Ruiz-Garcia L., Madueño F., Wilkinson M., Haughn G., Salinas J., Martinez-Zapater J.M., Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis, Plant Cell 9 (1994) 1921–1934.

    Google Scholar 

  36. Rumball W., Franklin I., Frankham R., Sheldon B., Decline in heterozygosity under full-sib and double-first cousin inbreeding in Drosophila rnelanogaster, Genetics 136 (1994) 1039–1049.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh S.M., Zouris E., Genetic variation associated with growth rate in the American oyster (Crassostrea virginica), Evolution 32 (1978) 342–353.

    Article  Google Scholar 

  38. Slatkin M., Wade M.J., Group selection on a quantitative character, Proc. Nat. Acad. Sci. USA 75 (1978) 3531–3534.

    Article  CAS  Google Scholar 

  39. Snape J.W., Lawrence M.J., The breeding system of Arabidopsis thaliana, Heredity 27 (1971) 299–302.

    Article  Google Scholar 

  40. Soltis D.E., Soltis P.S., Isozymes in plant biology, London, 1989.

    Google Scholar 

  41. Tigerstedt P.M.A., Rudin D., Niemela T., Tammisola J., Competition and neighbouring effect in a naturally regenerating population of Scots pine, Silva Fenica 16 (1982) 122–129.

    Google Scholar 

  42. Tracey M.L., Bellet N.F., Graven C.B., Excess of allozyme homozygosity and breeding population structure in the mussel Mytilus californianus, Mar. Biol. 32 (1975) 303–311.

    Article  CAS  Google Scholar 

  43. Wade M.J., McCauley D.E., Extinction and recolonization: their effects on the genetic differentiation of local populations, Evolution 42 (1988) 995–1005.

    Article  Google Scholar 

  44. Watt W.B., Donohue K., Carter P.A., Adaptation at specific loci. 6. Divergence vs parallelism of polymorphic allozymes in molecular function and fitness-component effects among Colias species (Lepidoptera, Pieridae), Mol. Biol. Evol. 13 (1996) 699–709.

    Article  CAS  Google Scholar 

  45. Weir B.S., Cockerham C.C., Estimating F-statistics for the analysis of population structure, Evolution 38 (1984) 1358–1370.

    CAS  Google Scholar 

  46. Whitlock M.C., McCauley D.E., Some population genetic consequences of colony formation and extinction: genetic correlations within founding groups, Evolution 44 (1990) 1717–1724.

    Article  Google Scholar 

  47. Zhang J., Lechowicz M.J., Correlation between time of flowering and phenotypic plasticity in Arabidopsis thaliana (Brassicaceae), Am. J. Bot. 81 (1994) 1336–1342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Lavigne.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Lavigne, C., Reboud, X., Lefranc, M. et al. Evolution of genetic diversity in metapopulations: Arabidopsis thaliana as an experimental model. Genet Sel Evol 33 (Suppl 1), S399 (2001). https://doi.org/10.1186/BF03500892

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/BF03500892

Keywords

Mots clés