Open Access

Erratum to: Genetic diversity of a large set of horse breeds raised in France assessed by microsatellite polymorphism

  • Grégoire Leroy1, 2Email author,
  • Lucille Callède1, 2,
  • Etienne Verrier1, 2,
  • Jean-Claude Mériaux3,
  • Anne Ricard4,
  • Coralie Danchin-Burge1, 2 and
  • Xavier Rognon1, 2
Genetics Selection Evolution200941:31

https://doi.org/10.1186/1297-9686-41-31

Received: 12 March 2009

Accepted: 19 March 2009

Published: 19 March 2009

The original article was published in Genetics Selection Evolution 2009 41:5

Abstract

After the recent publication of our article (Leroy, Genetics Selection Evolution 2009 41:5), we found several errors in the published Table Three, concerning the computation of contribution to within-breed diversity (CW). We apologize to the readers for these errors, which are corrected in the present erratum.

Correction

Table Three (see Table 1 of this erratum) of our recently published paper [1] contains several errors. Here we present the corrected version of Table Three (see Table 2 of this erratum) and explain the new data. The authors regret the errors.
Table 1

Original and incorrect Table Three presented in Leroy et al. (2009)

Breed code

Nb of breeding animals in 2005

Pr. extinction

Agregate diversity and cryopreservation potential

(Ollivier and Foulley, 2005)

Loss or gain of diversity when a breed is removed and contributions to optimal diversity

(Caballero and Toro, 2002)

 

Males

Females

 

CW

CB

D

CP

ΔGD WS

ΔGD BS

ΔGD T

C i

AA

  

0.11

0.35

0.85

0.39

0.10

-0.0013

-0.0018

-0.0031

0%

AR

480

2 130

0.03

0.29

10.90

1.25

0.35

-0.0015

-0.0010

-0.0026

0%

ARD

187

1 417

0.08

-0.48

1.33

-0.32

0.10

0.0031

0.0001

0.0032

0%

AUX

24

248

0.57

-0.19

3.14

0.11

1.79

0.0023

-0.0005

0.0018

0%

BOUL

58

540

0.24

-0.27

12.35

0.87

2.95

0.0040

-0.0023

0.0018

6%

BR

621

6 380

0.02

-0.38

5.57

0.16

0.12

0.0016

0.0009

0.0024

0%

CAM

118

837

0.12

0.00

7.99

0.73

0.97

-0.0018

0.0013

-0.0006

0%

COBND

63

760

0.21

-0.06

2.42

0.16

0.52

-0.0017

0.0019

0.0002

2%

COMT

856

7 073

0.02

-0.25

3.63

0.11

0.06

0.0000

0.0015

0.0015

0%

LAND

22

73

0.74

0.06

3.99

0.41

2.95

-0.0029

0.0016

-0.0014

2%

MER

93

1 012

0.15

-0.04

10.41

0.91

1.53

0.0000

0.0001

0.0001

0%

PER

183

2 461

0.07

-0.32

4.60

0.12

0.34

0.0006

0.0014

0.0020

0%

PFS

100

949

0.14

0.39

1.93

0.53

0.27

-0.0055

0.0024

-0.0031

70%

POIT

39

199

0.38

-0.43

12.60

0.75

4.83

0.0069

-0.0030

0.0039

0%

POT

94

910

0.15

0.19

1.33

0.29

0.20

-0.0040

0.0024

-0.0016

5%

PS

369

8 049

0.04

0.50

6.17

1.02

0.22

-0.0001

-0.0041

-0.0042

1%

SF

474

11 700

0.03

0.45

1.33

0.53

0.04

-0.0024

-0.0013

-0.0037

15%

TDN

16

183

0.85

-0.17

1.93

0.02

1.64

0.0032

-0.0009

0.0022

0%

TF

527

15 950

0.02

0.36

7.51

1.01

0.18

-0.0002

-0.0029

-0.0032

0%

Sum

   

0

100

9.054

 

0

-0.043

0.043

100%

CW = contribution to within-breed diversity; CB = contribution to between-breed diversity; D = aggregate diversity;CP = cryopreservation potential; ΔGD WS = loss or gain of gene diversity within populations when breed is removed; ΔGD BS = loss or gain of gene diversity between populations when breed is removed; ΔGD T = loss or gain of total diversity when the breed is removed; C i = contribution of the breed to optimise GD T

Table 2

Corrected Table Three

Breed code

Nb of breeding animals in 2005

Pr. Extinction

Agregate diversity and cryopreservation potential

(Ollivier and Foulley, 2005)

Loss or gain of diversity when a breed is removed and contributions to optimal diversity

(Caballero and Toro, 2002)

 

Males

Females

 

CW

CB

D

CP

ΔGD WS

ΔGD BS

ΔGD T

C i

AA

119

1 443

0.11

0.18

0.85

0.24

0.10

-0.0013

-0.0018

-0.0031

0%

AR

480

2 130

0.03

0.21

10.90

1.18

0.35

-0.0015

-0.0010

-0.0026

0%

ARD

187

1 417

0.08

-0.46

1.33

-0.30

0.10

0.0031

0.0001

0.0032

0%

AUX

24

248

0.57

-0.32

3.14

-0.01

1.79

0.0023

-0.0005

0.0018

0%

BOUL

58

540

0.24

-0.60

12.35

0.57

2.95

0.0040

-0.0023

0.0018

6%

BR

621

6 380

0.02

-0.24

5.57

0.29

0.12

0.0016

0.0009

0.0024

0%

CAM

118

837

0.12

0.27

7.99

0.97

0.97

-0.0018

0.0013

-0.0006

0%

COBND

63

760

0.21

0.24

2.42

0.44

0.52

-0.0017

0.0019

0.0002

2%

COMT

856

7 073

0.02

-0.01

3.63

0.32

0.06

0.0000

0.0015

0.0015

0%

LAND

22

73

0.74

0.48

3.99

0.79

2.95

-0.0029

0.0016

-0.0014

2%

MER

93

1 012

0.15

0.02

10.41

0.96

1.53

0.0000

0.0001

0.0001

0%

PER

183

2 461

0.07

-0.10

4.60

0.33

0.34

0.0006

0.0014

0.0020

0%

PFS

100

949

0.14

0.78

1.93

0.89

0.27

-0.0055

0.0024

-0.0031

70%

POIT

39

199

0.38

-1.00

12.60

0.23

4.83

0.0069

-0.0030

0.0039

0%

POT

94

910

0.15

0.58

1.33

0.64

0.20

-0.0040

0.0024

-0.0016

5%

PS

369

8 049

0.04

0.01

6.17

0.57

0.22

-0.0001

-0.0041

-0.0042

1%

SF

474

11 700

0.03

0.34

1.33

0.43

0.04

-0.0024

-0.0013

-0.0037

15%

TDN

16

183

0.85

-0.41

1.93

-0.20

1.64

0.0032

-0.0009

0.0022

0%

TF

527

15 950

0.02

0.02

7.51

0.70

0.18

-0.0002

-0.0029

-0.0032

0%

Sum

   

0

100

9.054

 

0

-0.043

0.043

100%

CW = contribution to within-breed diversity; CB = contribution to between-breed diversity; D = aggregate diversity;CP = cryopreservation potential; ΔGD WS = loss or gain of gene diversity within populations when breed is removed; ΔGD BS = loss or gain of gene diversity between populations when breed is removed; ΔGD T = loss or gain of total diversity when the breed is removed; C i = contribution of the breed to optimise GD T

Results

Partition of diversity

Errors concern the computation of the CW component developed by Ollivier and Foulley [2]. In the new version, CW ranged from -1 to 0.78. As aggregate diversity D is defined as a linear combination of CW and contribution to between-breed diversity, column D had also to be corrected, and ranged from -0.30 to 1.18. Consequently, the Pearson correlation between CW and ΔGD WS was found to be -1 (instead of -0.72 in the previous version), and the Pearson correlation between D and ΔGD T was found to be -0.59 (P = 0.008).

Discussion

Conservation priorities

In spite of the above modifications, the populations that contributed most to the total diversity, according to the approaches of Ollivier and Foulley [2] and Caballero and Toro [3], still remain mostly the non-endangered breeds (AR, PFS, TF) [instead of AR, PS, SF, TF in the previous version].

On the contrary, when considering the eight breeds classified as endangered or endangered/maintained by the FAO (ARD, AUX, BOUL, LAND, MER, POIT, POT, TDN) and the approach of Ollivier and Foulley [2], a change is noted for the breeds exhibiting the highest contributions to aggregate diversity D, which are now MER, LAND and POT, instead of BOUL, MER and POIT.

Finally, since the discussion on breed conservation is based on the use of several other methods and parameters, the above new results do not change our recommendations on which breeds specifically need support.

Notes

Authors’ Affiliations

(1)
AgroParisTech, UMR1236 Génétique et Diversité Animales
(2)
INRA, UMR1236 Génétique et Diversité Animales
(3)
LABOGENA
(4)
INRA, UR631 Station d'amélioration génétique des animaux

References

  1. Leroy G, Callede L, Verrier E, Mériaux JC, Ricard A, Danchin-Burge C, Rognon X: Genetic diversity of a large set of horse breeds raised in France assessed by microsatellite polymorphism. Genet Sel Evol. 2009, 41: 5-PubMed CentralView ArticlePubMedGoogle Scholar
  2. Ollivier L, Foulley JL: Aggregate diversity: New approach combining within- and between-breed genetic diversity. Livest Prod Sci. 2005, 95: 247-254. 10.1016/j.livprodsci.2005.01.005.View ArticleGoogle Scholar
  3. Caballero A, Toro MA: Analysis of genetic diversity for the management of conserved subdivided populations. Conserv Genet. 2002, 3: 289-299. 10.1023/A:1019956205473.View ArticleGoogle Scholar

Copyright

© Leroy et al; licensee BioMed Central Ltd. 2009

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement