Conover DO: Temperature-dependent sex determination in fishes. Temperature-Dependent Sex Determination in Vertebrates. Edited by: Valenzuela N, Lance V. 2004, Washington DC: Smithsonian Books, 11-20.
Google Scholar
Bezault E, Clota F, Derivaz M, Chevassus B, Baroiller J-F: Sex determination and temperature-induced sex differentiation in three natural populations of Nile tilapia (Oreochromis niloticus) adapted to extreme temperature conditions. Aquaculture. 2007, 272: S3-S16.
Google Scholar
Conover DO, Kynard BE: Environmental sex determination: interaction of temperature and genotype in a fish. Science. 1981, 213: 577-579. 10.1126/science.213.4507.577.
CAS
PubMed
Google Scholar
Ospina-Álvarez N, Piferrer F: Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE. 2008, 3: e2837-10.1371/journal.pone.0002837.
PubMed Central
PubMed
Google Scholar
Baroiller JF, D’Cotta H, Saillant E: Environmental effects on fish sex determination and differentiation. Sex Dev. 2009, 3: 118-135. 10.1159/000223077.
CAS
PubMed
Google Scholar
Valenzuela N, Adams DC, Janzen FJ: Pattern does not equal process: exactly when is sex environmentally determined?. Am Nat. 2003, 161: 676-683. 10.1086/368292.
PubMed
Google Scholar
Valenzuela N, Lance V: Temperature Dependent Sex Determination in Vertebrates. 2004, Washington DC: Smithsonian Books
Google Scholar
Charnier M: Action de la température sur le sex-ratio chez l’embryon d’Agama agama (Agamidae, Lacertilien). C R Soc Seances Soc Biol Fil. 1966, 160: 620-622.
CAS
Google Scholar
Pieau C: Sur la proportion sexuelle chez les embryons de deux Chéloniens (Testudo graeca L. et Emys orbicularis L.) issus d’oeufs incubés artificiellement. C R Acad Sci Hebd Seances Acad Sci D. 1971, 272: 3071-3074.
CAS
PubMed
Google Scholar
Pieau C: Effets de la température sur le développement des glandes génitales chez les embryons de deux Chéloniens, Emys orbicularis L. et Testudo graeca L. C R Acad Sci Hebd Seances Acad Sci D. 1972, 274: 719-722.
CAS
PubMed
Google Scholar
Luckenbach JA, Borski RJ, Daniels HV, Godwin J: Sex determination in flatfishes: Mechanisms and environmental influences. Semin Cell Dev Biol. 2009, 20: 256-263. 10.1016/j.semcdb.2008.12.002.
PubMed
Google Scholar
Wang HP, Gao ZX, Rapp D, O’Bryant P, Yao H, Cao XJ: Effects of temperature and genotype on sex determination and sexual size dimorphism of bluegill sunfish Lepomis macrochirus. Aquaculture. 2014, 420–421: S64-S71.
Google Scholar
Grossen C, Neuenschwander S, Perrin N: Temperature-Dependent Turnovers in Sex-Determination Mechanisms: A Quantitative Model. Evolution. 2011, 65: 64-78. 10.1111/j.1558-5646.2010.01098.x.
PubMed
Google Scholar
Shang EHH, Yu RMK, Wu RSS: Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol. 2006, 40: 3118-3122. 10.1021/es0522579.
CAS
PubMed
Google Scholar
Lo KH, Hui MNY, Yu RMK, Wu RSS, Cheng SH: Hypoxia impairs primordial germ cell migration in zebrafish (Danio rerio) embryos. PLoS ONE. 2011, 6: e24540-10.1371/journal.pone.0024540.
PubMed Central
CAS
PubMed
Google Scholar
Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, Thisse C, Thisse B, Raz E: Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol. 2003, 13: 1429-1434. 10.1016/S0960-9822(03)00537-2.
CAS
PubMed
Google Scholar
Thomas P, Rahman MS: Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. Proc Biol Sci. 2012, 279: 28-38. 10.1098/rspb.2011.0529.
PubMed Central
CAS
PubMed
Google Scholar
Marshall D: General effects of temperature on animal biology. Temperature-Dependent Sex Determination in Vertebrates. Edited by: Valenzuela N, Lance V. 2004, Washington DC: Smithsonian Books, 71-78.
Google Scholar
Bull J: Evolution of Sex Determining Mechanisms. 1983, Menlo Park: Benjamin/Cummings Publishing Company
Google Scholar
Conover DO, Heins SW: Adaptive variation in environmental and genetic sex determination in a fish. Nature. 1987, 326: 496-498. 10.1038/326496a0.
CAS
PubMed
Google Scholar
Schwanz LE, Ezaz T, Gruber B, Georges A: Novel evolutionary pathways of sex-determining mechanisms. J Evol Biol. 2013, 26: 2544-2557. 10.1111/jeb.12258.
CAS
PubMed
Google Scholar
Bull JJ: Evolution of environmental sex determination from genotypic sex determination. Heredity. 1981, 47: 173-184. 10.1038/hdy.1981.74.
Google Scholar
Charlesworth B: The evolution of chromosomal sex determination and dosage compensation. Curr Biol. 1996, 6: 149-162. 10.1016/S0960-9822(02)00448-7.
CAS
PubMed
Google Scholar
Sarre SD, Ezaz T, Georges A: Transitions between sex-determining systems in reptiles and amphibians. Annu Rev Genomics Hum Genet. 2011, 12: 391-406. 10.1146/annurev-genom-082410-101518.
CAS
PubMed
Google Scholar
Janzen FJ, Krenz J: Phylogenetics: Which was first, TSD or GSD?. Temperature-Dependent Sex determination in Vertebrates. Edited by: Valenzuela N, Lance V. 2004, Washington DC: Smithsonian Books, 121-130.
Google Scholar
Valenzuela N: Evolution of the gene network underlying gonadogenesis in turtles with temperature-dependent and genotypic sex determination. Integr Comp Biol. 2008, 48: 476-485. 10.1093/icb/icn031.
CAS
PubMed
Google Scholar
Valenzuela N, LeClere A, Shikano T: Comparative gene expression of steroidogenic factor 1 in Chrysemys picta and Apalone mutica turtles with temperature-dependent and genotypic sex determination. Evol Dev. 2006, 8: 424-432. 10.1111/j.1525-142X.2006.00116.x.
CAS
PubMed
Google Scholar
Valenzuela N: Relic thermosensitive gene expression in a turtle with genotypic sex determination. Evolution. 2008, 62: 234-240.
CAS
PubMed
Google Scholar
Gao F, Maiti S, Alam N, Zhang Z, Deng JM, Behringer RR, Lécureuil C, Guillou F, Huff V: The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci U S A. 2006, 103: 11987-11992. 10.1073/pnas.0600994103.
PubMed Central
CAS
PubMed
Google Scholar
Shoemaker CM, Crews D: Analyzing the coordinated gene network underlying temperature-dependent sex determination in reptiles. Semin Cell Dev Biol. 2009, 20: 293-303. 10.1016/j.semcdb.2008.10.010.
PubMed Central
CAS
PubMed
Google Scholar
Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M: DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature. 2002, 417: 559-563. 10.1038/nature751.
CAS
PubMed
Google Scholar
Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M: A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci U S A. 2002, 99: 11778-11783. 10.1073/pnas.182314699.
PubMed Central
CAS
PubMed
Google Scholar
Kondo M, Hornung U, Nanda I, Imai S, Sasaki T, Shimizu A, Asakawa S, Hori H, Schmid M, Shimizu N, Schartl M: Genomic organization of the sex-determining and adjacent regions of the sex chromosomes of medaka. Genome Res. 2006, 16: 815-826. 10.1101/gr.5016106.
PubMed Central
CAS
PubMed
Google Scholar
Burtis KC, Baker BS: Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell. 1989, 56: 997-1010. 10.1016/0092-8674(89)90633-8.
CAS
PubMed
Google Scholar
Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, Hodgkin J, Zarkower D: Evidence for evolutionary conservation of sex-determining genes. Nature. 1998, 391: 691-695. 10.1038/35618.
CAS
PubMed
Google Scholar
Zhu L, Wilken J, Phillips NB, Narendra U, Chan G, Stratton SM, Kent SB, Weiss MA: Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Genes Dev. 2000, 14: 1750-1764.
PubMed Central
CAS
PubMed
Google Scholar
Volff JN, Zarkower D, Bardwell VJ, Schartl M: Evolutionary dynamics of the DM domain gene family in metazoans. J Mol Evol. 2003, 57: S241-S249. 10.1007/s00239-003-0033-0.
CAS
PubMed
Google Scholar
Kondo M, Nanda I, Hornung U, Schmid M, Schartl M: Evolutionary origin of the medaka Y chromosome. Curr Biol. 2004, 14: 1664-1669. 10.1016/j.cub.2004.09.026.
CAS
PubMed
Google Scholar
Schartl M: Function of the medaka male sex-determining gene. Medaka: A Model for Organogenesis Human Disease and Evolution. Edited by: Naruse K, Tanaka M, Takeda H. 2011, Tokyo Dordrecht Heidelberg London New York: Springer, 241-253.
Google Scholar
Otake H, Shinomiya A, Matsuda M, Hamaguchi S, Sakaizumi M: Wild-derived XY sex-reversal mutants in the Medaka, Oryzias latipes. Genetics. 2006, 173: 2083-2090. 10.1534/genetics.106.058941.
PubMed Central
CAS
PubMed
Google Scholar
Suzuki A, Nakamoto M, Kato Y, Shibata N: Effects of estradiol-17beta on germ cell proliferation and DMY expression during early sexual differentiation of the medaka Oryzias latipes. Zool Sci. 2005, 22: 791-796. 10.2108/zsj.22.791.
CAS
PubMed
Google Scholar
Hattori RS, Gould RJ, Fujioka T, Saito T, Kurita J, Strüssmann CA, Yokota M, Watanabe S: Temperature-dependent sex determination in Hd-rR medaka Oryzias latipes: gender sensitivity, thermal threshold, critical period, and DMRT1 expression profile. Sex Dev. 2007, 1: 138-146. 10.1159/000100035.
CAS
PubMed
Google Scholar
Paul-Prasanth B, Matsuda M, Lau EL, Suzuki A, Sakai F, Kobayashi T, Nagahama Y: Knock-down of DMY initiates female pathway in the genetic male medaka, Oryzias latipes. Biochem Biophys Res Commun. 2006, 351: 815-819. 10.1016/j.bbrc.2006.10.095.
CAS
PubMed
Google Scholar
Matsuda M, Shinomiya A, Kinoshita M, Suzuki A, Kobayashi T, Paul-Prasanth B, Lau EL, Hamaguchi S, Sakaizumi M, Nagahama Y: DMY gene induces male development in genetically female (XX) medaka fish. Proc Natl Acad Sci U S A. 2007, 104: 3865-3870. 10.1073/pnas.0611707104.
PubMed Central
CAS
PubMed
Google Scholar
Selim KM, Shinomiya A, Otake H, Hamaguchi S, Sakaizumi M: Effects of high temperature on sex differentiation and germ cell population in medaka, Oryzias latipes. Aquaculture. 2009, 289: 340-349. 10.1016/j.aquaculture.2008.12.019.
Google Scholar
Shine R, Elphick MJ, Donnellan S: Co-occurrence of multiple, supposedly incompatible modes of sex determination in a lizard population. Ecol Lett. 2002, 5: 486-489. 10.1046/j.1461-0248.2002.00351.x.
Google Scholar
Devlin RH, Nagahama Y: Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 2002, 208: 191-364. 10.1016/S0044-8486(02)00057-1.
CAS
Google Scholar
Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strussmann CA: A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci U S A. 2012, 109: 2955-2959. 10.1073/pnas.1018392109.
PubMed Central
CAS
PubMed
Google Scholar
Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M: Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics. 2012, 191: 163-170. 10.1534/genetics.111.137497.
PubMed Central
CAS
PubMed
Google Scholar
Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K: A trans-species missense SNP in amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu). PLoS Genet. 2012, 8: e1002798-10.1371/journal.pgen.1002798.
PubMed Central
CAS
PubMed
Google Scholar
Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y: An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol. 2012, 22: 1423-1428. 10.1016/j.cub.2012.05.045.
CAS
PubMed
Google Scholar
Drummond AE: TGFβ signalling in the development of ovarian function. Cell Tissue Res. 2005, 322: 107-115. 10.1007/s00441-005-1153-1.
CAS
PubMed
Google Scholar
Fan YS, Hu YJ, Yang WX: TGF-β superfamily: how does it regulate testis development. Mol Biol Rep. 2012, 39: 4727-4741. 10.1007/s11033-011-1265-5.
CAS
PubMed
Google Scholar
Smith CA, Sinclair AH: Sex determination: insights from the chicken. Bioessays. 2004, 26: 120-132. 10.1002/bies.10400.
CAS
PubMed
Google Scholar
Oreal E, Pieau C, Mattei MG, Josso N, Picard JY, Carré-Eusèbe D, Magre S: Early expression of AMH in chicken embryonic gonads precedes testicular SOX9 expression. Dev Dyn. 1998, 212: 522-532. 10.1002/(SICI)1097-0177(199808)212:4<522::AID-AJA5>3.0.CO;2-J.
CAS
PubMed
Google Scholar
Smith CA, Roeszler KN, Hudson QJ, Sinclair AH: Avian sex determination: what, when and where?. Cytogenet Genome Res. 2007, 117: 165-173. 10.1159/000103177.
CAS
PubMed
Google Scholar
Western PS, Harry JL, Graves JA, Sinclair AH: Temperature-dependent sex determination in the American alligator: AMH precedes SOX9 expression. Dev Dyn. 1999, 216: 411-419. 10.1002/(SICI)1097-0177(199912)216:4/5<411::AID-DVDY9>3.0.CO;2-Y.
CAS
PubMed
Google Scholar
Rodríguez-Marí A, Yan YL, Bremiller RA, Wilson C, Cañestro C, Postlethwait JH: Characterization and expression pattern of zebrafish Anti-Müllerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr Patterns. 2005, 5: 655-667. 10.1016/j.modgep.2005.02.008.
PubMed
Google Scholar
Takaoka A, Yanai H: Interferon signalling network in innate defence. Cell Microbiol. 2006, 8: 907-922. 10.1111/j.1462-5822.2006.00716.x.
CAS
PubMed
Google Scholar
Yano A, Nicol B, Jouanno E, Quillet E, Fostier A, Guyomard R, Guiguen Y: The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl. 2013, 6: 486-496. 10.1111/eva.12032.
PubMed Central
CAS
PubMed
Google Scholar
Kikuchi K, Hamaguchi S: Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn. 2013, 242: 339-353. 10.1002/dvdy.23927.
CAS
PubMed
Google Scholar
Zarkower D: Establishing sexual dimorphism: conservation amidst diversity?. Nat Rev Genet. 2001, 2: 175-185. 10.1038/35056032.
CAS
PubMed
Google Scholar
Marín I, Baker BS: The evolutionary dynamics of sex determination. Science. 1998, 281: 1990-1994.
PubMed
Google Scholar
Shen MM, Hodgkin J: mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell. 1988, 54: 1019-1031. 10.1016/0092-8674(88)90117-1.
CAS
PubMed
Google Scholar
Ferguson-Smith M: The evolution of sex chromosomes and sex determination in vertebrates and the key role of DMRT1. Sex Dev. 2007, 1: 2-11. 10.1159/000096234.
CAS
PubMed
Google Scholar
Smith CA, McClive PJ, Western PS, Reed KJ, Sinclair AH: Conservation of a sex-determining gene. Nature. 1999, 402: 601-602.
CAS
PubMed
Google Scholar
Brunner B, Hornung U, Shan Z, Nanda I, Kondo M, Zend-Ajusch E, Haaf T, Ropers HH, Shima A, Schmid M, Kalscheuer VM, Schartl M: Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics. 2001, 77: 8-17. 10.1006/geno.2001.6615.
CAS
PubMed
Google Scholar
Hoegg S, Brinkmann H, Taylor JS, Meyer A: Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol. 2004, 59: 190-203. 10.1007/s00239-004-2613-z.
CAS
PubMed
Google Scholar
Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y: Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res. 2003, 13: 382-390. 10.1101/gr.640303.
PubMed Central
CAS
PubMed
Google Scholar
Christoffels A, Koh EGL, Chia JM, Brenner S, Aparicio S, Venkatesh B: Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol. 2004, 21: 1146-1151. 10.1093/molbev/msh114.
CAS
PubMed
Google Scholar
Meyer A, Van de Peer Y: From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays. 2005, 27: 937-945. 10.1002/bies.20293.
CAS
PubMed
Google Scholar
Wang JT, Li JT, Zhang XF, Sun XW: Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio). BMC Genomics. 2012, 13: 96-10.1186/1471-2164-13-96.
PubMed Central
CAS
PubMed
Google Scholar
Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y: Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod. 2008, 78: 333-341. 10.1095/biolreprod.107.064246.
CAS
PubMed
Google Scholar
Baron D, Houlgatte R, Fostier A, Guiguen Y: Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol Reprod. 2005, 73: 959-966. 10.1095/biolreprod.105.041830.
CAS
PubMed
Google Scholar
Marchand O, Govoroun M, D’Cotta H, McMeel O, Lareyre JJ, Bernot A, Laudet V, Guiguen Y: DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss. Biochim Biophys Acta. 2000, 1493: 180-187. 10.1016/S0167-4781(00)00186-X.
CAS
PubMed
Google Scholar
Fernandino JI, Hattori RS, Kimura H, Strüssmann CA, Somoza GM: Expression profile and estrogenic regulation of anti-Müllerian hormone during gonadal development in pejerrey Odontesthes bonariensis, a teleost fish with strong temperature-dependent sex determination. Dev Dyn. 2008, 237: 3192-3199. 10.1002/dvdy.21731.
CAS
PubMed
Google Scholar
Kettlewell JR, Raymond CS, Zarkower D: Temperature-dependent expression of turtle Dmrt1 prior to sexual differentiation. Genesis. 2000, 26: 174-178. 10.1002/(SICI)1526-968X(200003)26:3<174::AID-GENE2>3.0.CO;2-J.
CAS
PubMed
Google Scholar
Murdock C, Wibbels T: Expression of Dmrt1 in a turtle with temperature-dependent sex determination. Cytogenet Genome Res. 2003, 101: 302-308. 10.1159/000074353.
CAS
PubMed
Google Scholar
Rhen T, Metzger K, Schroeder A, Woodward R: Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina. Sex Dev. 2007, 1: 255-270. 10.1159/000104775.
CAS
PubMed
Google Scholar
Shoemaker CM, Queen J, Crews D: Response of candidate sex-determining genes to changes in temperature reveals their involvement in the molecular network underlying temperature-dependent sex determination. Mol Endocrinol. 2007, 21: 2750-2763. 10.1210/me.2007-0263.
CAS
PubMed
Google Scholar
Murdock C, Wibbels T: Dmrt1 expression in response to estrogen treatment in a reptile with temperature-dependent sex determination. J Exp Zool B Mol Dev Evol. 2006, 306: 134-139.
PubMed
Google Scholar
Schulz RW, Bogerd J, Male R, Ball J, Fenske M, Olsen LC, Tyler CR: Estrogen-induced alterations in amh and dmrt1 expression signal for disruption in male sexual development in the zebrafish. Environ Sci Technol. 2007, 41: 6305-6310. 10.1021/es070785+.
CAS
PubMed
Google Scholar
Fernandino JI, Hattori RS, Shinoda T, Kimura H, Strobl-Mazzulla PH, Strüssmann CA, Somoza GM: Dimorphic expression of dmrt1 and cyp19a1 (ovarian aromatase) during early gonadal development in pejerrey, Odontesthes bonariensis. Sex Dev. 2008, 2: 316-324. 10.1159/000195681.
CAS
PubMed
Google Scholar
Sato T, Endo T, Yamahira K, Hamaguchi S, Sakaizumi M: Induction of female-to-male sex reversal by high temperature treatment in medaka, Oryzias latipes. Zool Sci. 2005, 22: 985-988. 10.2108/zsj.22.985.
PubMed
Google Scholar
Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y: Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn. 2004, 231: 518-526. 10.1002/dvdy.20158.
CAS
PubMed
Google Scholar
Deloffre LAM, Martins RST, Mylonas CC, Canario AVM: Alternative transcripts of DMRT1 in the European sea bass: Expression during gonadal differentiation. Aquaculture. 2009, 293: 89-99. 10.1016/j.aquaculture.2009.03.048.
CAS
Google Scholar
Lee KH, Yamaguchi A, Rashid H, Kadomura K, Yasumoto S, Matsuyama M: Germ cell degeneration in high-temperature treated pufferfish, Takifugu rubripes. Sex Dev. 2009, 3: 225-232. 10.1159/000228723.
CAS
PubMed
Google Scholar
Josso N, di Clemente N, Gouédard L: Anti-Müllerian hormone and its receptors. Mol Cell Endocrinol. 2001, 179: 25-32. 10.1016/S0303-7207(01)00467-1.
CAS
PubMed
Google Scholar
Teixeira J, Maheswaran S, Donahoe PK: Müllerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr Rev. 2001, 22: 657-674.
CAS
PubMed
Google Scholar
Rey R, Lukas-Croisier C, Lasala C, Bedecarrás P: AMH/MIS: what we know already about the gene, the protein and its regulation. Mol Cell Endocrinol. 2003, 211: 21-31. 10.1016/j.mce.2003.09.007.
CAS
PubMed
Google Scholar
Josso N, di Clemente N: Transduction pathway of anti-Müllerian hormone, a sex-specific member of the TGF-beta family. Trends Endocrinol Metab. 2003, 14: 91-97. 10.1016/S1043-2760(03)00005-5.
CAS
PubMed
Google Scholar
Yoshinaga N, Shiraishi E, Yamamoto T, Iguchi T, Abe S, Kitano T: Sexually dimorphic expression of a teleost homologue of Müllerian inhibiting substance during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun. 2004, 322: 508-513. 10.1016/j.bbrc.2004.07.162.
CAS
PubMed
Google Scholar
Wang XG, Orban L: Anti-Müllerian hormone and 11 beta-hydroxylase show reciprocal expression to that of aromatase in the transforming gonad of zebrafish males. Dev Dyn. 2007, 236: 1329-1338. 10.1002/dvdy.21129.
CAS
PubMed
Google Scholar
Maugars G, Schmitz M: Gene expression profiling during spermatogenesis in early maturing male Atlantic salmon parr testes. Gen Comp Endocrinol. 2008, 159: 178-187. 10.1016/j.ygcen.2008.08.008.
CAS
PubMed
Google Scholar
Pala I, Klüver N, Thorsteinsdóttir S, Schartl M, Coelho MM: Expression pattern of anti-Müllerian hormone (amh) in the hybrid fish complex of Squalius alburnoides. Gene. 2008, 410: 249-258. 10.1016/j.gene.2007.12.018.
CAS
PubMed
Google Scholar
Klüver N, Pfennig F, Pala I, Storch K, Schlieder M, Froschauer A, Gutzeit HO, Schartl M: Differential expression of anti-Müllerian hormone (amh) and anti-Müllerian hormone receptor type II (amhrII) in the teleost medaka. Dev Dyn. 2007, 236: 271-281. 10.1002/dvdy.20997.
PubMed
Google Scholar
Takada S, DiNapoli L, Capel B, Koopman P: Sox8 is expressed at similar levels in gonads of both sexes during the sex determining period in turtles. Dev Dyn. 2004, 231: 387-395. 10.1002/dvdy.20132.
CAS
PubMed
Google Scholar
Wu GC, Chiu PC, Lyu YS, Chang CF: The expression of amh and amhr2 is associated with the development of gonadal tissue and sex change in the protandrous Black Porgy, Acanthopagrus schlegeli. Biol Reprod. 2010, 83: 443-453. 10.1095/biolreprod.110.084681.
CAS
PubMed
Google Scholar
Sekido R, Lovell-Badge R: Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008, 453: 930-934. 10.1038/nature06944.
CAS
PubMed
Google Scholar
Chaboissier MC, Kobayashi A, Vidal VIP, Lützkendorf S, van de Kant HJG, Wegner M, de Rooij DG, Behringer RR, Schedl A: Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development. 2004, 131: 1891-1901. 10.1242/dev.01087.
CAS
PubMed
Google Scholar
Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, Scherer G: Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod. 2006, 74: 195-201.
CAS
PubMed
Google Scholar
Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W, Scherer G: Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994, 79: 1111-1120. 10.1016/0092-8674(94)90041-8.
CAS
PubMed
Google Scholar
Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanović M, Weissenbach J, Mansour S, Young ID, Goodfellow PN, Brook JD, Schafer AJ: Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994, 372: 525-530. 10.1038/372525a0.
CAS
PubMed
Google Scholar
Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, Harrison WR, Behringer RR, Overbeek PA: A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet. 2000, 26: 490-494. 10.1038/82652.
CAS
PubMed
Google Scholar
Vidal VP, Chaboissier MC, de Rooij DG, Schedl A: Sox9 induces testis development in XX transgenic mice. Nat Genet. 2001, 28: 216-217. 10.1038/90046.
CAS
PubMed
Google Scholar
Hong CS, Saint-Jeannet JP: Sox proteins and neural crest development. Semin Cell Dev Biol. 2005, 16: 694-703. 10.1016/j.semcdb.2005.06.005.
CAS
PubMed
Google Scholar
Akiyama H, Lefebvre V: Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab. 2011, 29: 390-395. 10.1007/s00774-011-0273-9.
PubMed Central
PubMed
Google Scholar
Jakob S, Lovell-Badge R: Sex determination and the control of Sox9 expression in mammals. FEBS J. 2011, 278: 1002-1009. 10.1111/j.1742-4658.2011.08029.x.
CAS
PubMed
Google Scholar
Lincoln J, Kist R, Scherer G, Yutzey KE: Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol. 2007, 305: 120-132. 10.1016/j.ydbio.2007.02.002.
PubMed Central
CAS
PubMed
Google Scholar
Rhen T, Schroeder A: Molecular mechanisms of sex determination in reptiles. Sex Dev. 2010, 4: 16-28. 10.1159/000282495.
PubMed Central
CAS
PubMed
Google Scholar
Nakamura S, Watakabe I, Nishimura T, Toyoda A, Taniguchi Y, Tanaka M: Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PloS ONE. 2012, 7: e29982-10.1371/journal.pone.0029982.
PubMed Central
CAS
PubMed
Google Scholar
Zhou R, Liu L, Guo Y, Yu H, Cheng H, Huang X, Tiersch TR, Berta P: Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol Reprod Dev. 2003, 66: 211-217. 10.1002/mrd.10271.
CAS
PubMed
Google Scholar
Cresko WA, Yan YL, Baltrus DA, Amores A, Singer A, Rodríguez-Marí A, Postlethwait JH: Genome duplication, subfunction partitioning, and lineage divergence: Sox9 in stickleback and zebrafish. Dev Dyn. 2003, 228: 480-489. 10.1002/dvdy.10424.
CAS
PubMed
Google Scholar
Chiang EF, Pai CI, Wyatt M, Yan YL, Postlethwait J, Chung B: Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol. 2001, 231: 149-163. 10.1006/dbio.2000.0129.
CAS
PubMed
Google Scholar
Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H, Araki K, Morohashi KI, Ozato K: Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev. 2002, 63: 5-16. 10.1002/mrd.10169.
CAS
PubMed
Google Scholar
Koopman P, Schepers G, Brenner S, Venkatesh B: Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene. 2004, 328: 177-186.
CAS
PubMed
Google Scholar
Nakamoto M, Suzuki A, Matsuda M, Nagahama Y, Shibata N: Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes. Biochem Biophys Res Commun. 2005, 333: 729-736. 10.1016/j.bbrc.2005.05.158.
CAS
PubMed
Google Scholar
Takamatsu N, Kanda H, Ito M, Yamashita A, Yamashita S, Shiba T: Rainbow trout SOX9: cDNA cloning, gene structure and expression. Gene. 1997, 202: 167-170. 10.1016/S0378-1119(97)00483-6.
CAS
PubMed
Google Scholar
Hett AK, Pitra C, Jenneckens I, Ludwig A: Characterization of Sox9 in European Atlantic sturgeon (Acipenser sturio). J Hered. 2005, 96: 150-154. 10.1093/jhered/esi008.
CAS
PubMed
Google Scholar
Berbejillo J, Martinez-Bengochea A, Bedó G, Vizziano-Cantonnet D: Expression of dmrt1 and sox9 during gonadal development in the Siberian sturgeon (Acipenser baerii). Fish Physiol Biochem. 2013, 39: 91-94. 10.1007/s10695-012-9666-5.
CAS
PubMed
Google Scholar
Raghuveer K, Senthilkumaran B: Isolation of sox9 duplicates in catfish: localization, differential expression pattern during gonadal development and recrudescence, and hCG-induced up-regulation of sox9 in testicular slices. Reproduction. 2010, 140: 477-487. 10.1530/REP-10-0200.
CAS
PubMed
Google Scholar
Klüver N, Kondo M, Herpin A, Mitani H, Schartl M: Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization. Dev Genes Evol. 2005, 215: 297-305. 10.1007/s00427-005-0477-x.
PubMed
Google Scholar
D’Cotta H, Pepey E, Pfennig F, Bienvenu D, Gutzeit H, Volff J: Sox9a, Sox9b and Amh are up-regulated in the gonads during natural and temperature-induced tilapia male differentiation. Proceedings of the 8th International on Symposium. Reproductive Physiology of Fish: 3-8 June 2007; Saint-Malo. 2007
Google Scholar
Piferrer F, Blázquez M: Aromatase distribution and regulation in fish. Fish Physiol Biochem. 2005, 31: 215-226. 10.1007/s10695-006-0027-0.
CAS
PubMed
Google Scholar
Guiguen Y, Fostier A, Piferrer F, Chang CF: Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol. 2010, 165: 352-366. 10.1016/j.ygcen.2009.03.002.
CAS
PubMed
Google Scholar
Callard GV, Tchoudakova A: Evolutionary and functional significance of two CYP19 genes differentially expressed in brain and ovary of goldfish. J Steroid Biochem Mol Biol. 1997, 61: 387-392. 10.1016/S0960-0760(97)80037-4.
CAS
PubMed
Google Scholar
Tchoudakova A, Callard GV: Identification of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary. Endocrinology. 1998, 139: 2179-2189.
CAS
PubMed
Google Scholar
Ijiri S, Berard C, Trant JM: Characterization of gonadal and extra-gonadal forms of the cDNA encoding the Atlantic stingray (Dasyatis sabina) cytochrome P450 aromatase (CYP19). Mol Cell Endocrinol. 2000, 164: 169-181. 10.1016/S0303-7207(00)00228-8.
CAS
PubMed
Google Scholar
Chiang EF, Yan YL, Guiguen Y, Postlethwait J, Chung BC: Two Cyp19 (P450 aromatase) genes on duplicated zebrafish chromosomes are expressed in ovary or brain. Mol Biol Evol. 2001, 18: 542-550. 10.1093/oxfordjournals.molbev.a003833.
CAS
PubMed
Google Scholar
Jeng SR, Dufour S, Chang CF: Differential expression of neural and gonadal aromatase enzymatic activities in relation to gonadal development in Japanese eel, Anguilla japonica. J Exp Zool A Comp Exp Biol. 2005, 303: 802-812.
PubMed
Google Scholar
Patil JG, Gunasekera RM: Tissue and sexually dimorphic expression of ovarian and brain aromatase mRNA in the Japanese medaka (Oryzias latipes): implications for their preferential roles in ovarian and neural differentiation and development. Gen Comp Endocrinol. 2008, 158: 131-137. 10.1016/j.ygcen.2008.05.016.
CAS
PubMed
Google Scholar
Kallivretaki E, Eggen RIL, Neuhauss SCF, Kah O, Segner H: The zebrafish, brain-specific, aromatase cyp19a2 is neither expressed nor distributed in a sexually dimorphic manner during sexual differentiation. Dev Dyn. 2007, 236: 3155-3166. 10.1002/dvdy.21344.
CAS
PubMed
Google Scholar
Kitano T, Takamune K, Kobayashi T, Nagahama Y, Abe SI: Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J Mol Endocrinol. 1999, 23: 167-176. 10.1677/jme.0.0230167.
CAS
PubMed
Google Scholar
Yamaguchi T, Yamaguchi S, Hirai T, Kitano T: Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun. 2007, 359: 935-940. 10.1016/j.bbrc.2007.05.208.
CAS
PubMed
Google Scholar
D’Cotta H, Fostier A, Guiguen Y, Govoroun M, Baroiller JF: Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus. Mol Reprod Dev. 2001, 59: 265-276. 10.1002/mrd.1031.
PubMed
Google Scholar
van Nes S, Andersen Ø: Temperature effects on sex determination and ontogenetic gene expression of the aromatases cyp19a and cyp19b, and the estrogen receptors esr1 and esr2 in atlantic halibut (Hippoglossus hippoglossus). Mol Reprod Dev. 2006, 73: 1481-1490. 10.1002/mrd.20514.
CAS
PubMed
Google Scholar
Socorro S, Martins RS, Deloffre L, Mylonas CC, Canario AVM: A cDNA for European sea bass (Dicentrachus labrax) 11beta-hydroxylase: gene expression during the thermosensitive period and gonadogenesis. Gen Comp Endocrinol. 2007, 150: 164-173. 10.1016/j.ygcen.2006.07.018.
CAS
PubMed
Google Scholar
Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L, Piferrer F: DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 2011, 7: e1002447-10.1371/journal.pgen.1002447.
PubMed Central
PubMed
Google Scholar
Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y: Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol. 2007, 21: 712-725. 10.1210/me.2006-0248.
CAS
PubMed
Google Scholar
Zhang W, Yang Y, Peng Y, Zhang S, Zhang Y, Wu C, Zhang L: Differential synergism of Ftz-f1 homologues and Foxl2 on the activation of Cyp19a1a gene from rice field eel Monopterus albus, a protogynous hermaphroditic teleost. Biol Reprod. 2010, 83: 386-
Google Scholar
Tchoudakova A, Kishida M, Wood E, Callard GV: Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish. J Steroid Biochem Mol Biol. 2001, 78: 427-439. 10.1016/S0960-0760(01)00120-0.
CAS
PubMed
Google Scholar
Callard GV, Tchoudakova AV, Kishida M, Wood E: Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. J Steroid Biochem Mol Biol. 2001, 79: 305-314. 10.1016/S0960-0760(01)00147-9.
CAS
PubMed
Google Scholar
Tong SK, Chung B: Analysis of zebrafish cyp19 promoters. J Steroid Biochem Mol Biol. 2003, 86: 381-386. 10.1016/S0960-0760(03)00347-9.
CAS
PubMed
Google Scholar
Wang DS, Zhou LY, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y: Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology. 2010, 151: 1331-1340. 10.1210/en.2009-0999.
CAS
PubMed
Google Scholar
Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier A-C, Treier M: The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004, 131: 933-942. 10.1242/dev.00969.
CAS
PubMed
Google Scholar
Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, Amati P, Bisceglia L, Zelante L, Nagaraja R, Porcu S, Ristaldi MS, Marzella R, Rocchi M, Nicolino M, Lienhardt-Roussie A, Nivelon A, Verloes A, Schlessinger D, Gasparini P, Bonneau D, Cao A, Pilia G: The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet. 2001, 27: 159-166. 10.1038/84781.
CAS
PubMed
Google Scholar
Park M, Shin E, Won M, Kim JH, Go H, Kim HL, Ko JJ, Lee K, Bae J: FOXL2 interacts with steroidogenic factor-1 (SF-1) and represses SF-1-induced CYP17 transcription in granulosa cells. Mol Endocrinol. 2010, 24: 1024-1036. 10.1210/me.2009-0375.
CAS
PubMed
Google Scholar
Pannetier M, Fabre S, Batista F, Kocer A, Renault L, Jolivet G, Mandon-Pépin B, Cotinot C, Veitia R, Pailhoux E: FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrinol. 2006, 36: 399-413. 10.1677/jme.1.01947.
CAS
PubMed
Google Scholar
Pailhoux E, Vigier B, Chaffaux S, Servel N, Taourit S, Furet JP, Fellous M, Grosclaude F, Cribiu EP, Cotinot C, Vaiman D: A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet. 2001, 29: 453-458. 10.1038/ng769.
CAS
PubMed
Google Scholar
Pailhoux E, Vigier B, Vaiman D, Servel N, Chaffaux S, Cribiu EP, Cotinot C: Ontogenesis of female-to-male sex-reversal in XX polled goats. Dev Dyn. 2002, 224: 39-50. 10.1002/dvdy.10083.
CAS
PubMed
Google Scholar
Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G: Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet. 2004, 13: 1171-1181. 10.1093/hmg/ddh124.
CAS
PubMed
Google Scholar
Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, Forabosco A, Pilia G, Schlessinger D: Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet. 2005, 14: 2053-2062. 10.1093/hmg/ddi210.
CAS
PubMed
Google Scholar
Uhlenhaut NH, Treier M: Foxl2 function in ovarian development. Mol Genet Metab. 2006, 88: 225-234. 10.1016/j.ymgme.2006.03.005.
CAS
PubMed
Google Scholar
Nakamoto M, Matsuda M, Wang DS, Nagahama Y, Shibata N: Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochem Biophys Res Commun. 2006, 344: 353-361. 10.1016/j.bbrc.2006.03.137.
CAS
PubMed
Google Scholar
Baron D, Cocquet J, Xia X, Fellous M, Guiguen Y, Veitia RA: An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol. 2004, 33: 705-715. 10.1677/jme.1.01566.
CAS
PubMed
Google Scholar
Liu Z, Wu F, Jiao B, Zhang X, Hu C, Huang B, Zhou L, Huang X, Wang Z, Zhang Y, Nagahama Y, Cheng CHK, Wang D: Molecular cloning of doublesex and mab-3-related transcription factor 1, forkhead transcription factor gene 2, and two types of cytochrome P450 aromatase in Southern catfish and their possible roles in sex differentiation. J Endocrinol. 2007, 194: 223-241. 10.1677/JOE-07-0135.
CAS
PubMed
Google Scholar
He Y, Luo M, Yi M, Sheng Y, Cheng Y, Zhou R, Cheng H: Identification of a testis-enriched heat shock protein and fourteen members of hsp70 family in the swamp eel. PloS ONE. 2013, 8: e65269-10.1371/journal.pone.0065269.
PubMed Central
CAS
PubMed
Google Scholar
Rissanen E, Tranberg HK, Sollid J, Nilsson GE, Nikinmaa M: Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol. 2006, 209: 994-1003. 10.1242/jeb.02103.
CAS
PubMed
Google Scholar
Navara KJ: Hormone-mediated adjustment of sex ratio in vertebrates. Integr Comp Biol. 2013, 53: 877-887. 10.1093/icb/ict081.
CAS
PubMed
Google Scholar
Van den Hurk R, van Oordt PG: Effects of natural androgens and corticosteroids on gonad differentiation in the rainbow trout, Salmo gairdneri. Gen Comp Endocrinol. 1985, 57: 216-222. 10.1016/0016-6480(85)90266-7.
CAS
PubMed
Google Scholar
Wendelaar Bonga SE: The stress response in fish. Physiol Rev. 1997, 77: 591-625.
CAS
PubMed
Google Scholar
Payvar F, DeFranco D, Firestone GL, Edgar B, Wrange O, Okret S, Gustafsson JA, Yamamoto KR: Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell. 1983, 35: 381-392. 10.1016/0092-8674(83)90171-X.
CAS
PubMed
Google Scholar
Hayashi Y, Kobira H, Yamaguchi T, Shiraishi E, Yazawa T, Hirai T, Kamei Y, Kitano T: High temperature causes masculinization of genetically female medaka by elevation of cortisol. Mol Reprod Dev. 2010, 77: 679-686. 10.1002/mrd.21203.
CAS
PubMed
Google Scholar
Hattori RS, Fernandino JI, Kishii A, Kimura H, Kinno T, Oura M, Somoza GM, Yokota M, Strüssmann CA, Watanabe S: Cortisol-induced masculinization: does thermal stress affect gonadal fate in Pejerrey, a teleost fish with temperature-dependent sex determination?. PLoS ONE. 2009, 4: e6548-10.1371/journal.pone.0006548.
PubMed Central
PubMed
Google Scholar
Mankiewicz JL, Godwin J, Holler BL, Turner PM, Murashige R, Shamey R, Daniels HV, Borski RJ: Masculinizing effect of background color and cortisol in a flatfish with environmental sex-determination. Integr Comp Biol. 2013, 53: 755-765. 10.1093/icb/ict093.
CAS
PubMed
Google Scholar
Yamaguchi T, Yoshinaga N, Yazawa T, Gen K, Kitano T: Cortisol is involved in temperature-dependent sex determination in the Japanese flounder. Endocrinology. 2010, 151: 3900-3908. 10.1210/en.2010-0228.
CAS
PubMed
Google Scholar
Russo V, Martienssen R, Riggs A: Epigenetic Mechanisms of Gene Regulation. 1996, New York: Cold Spring Harbor Laboratory Press
Google Scholar
Brock HW, Fisher CL: Maintenance of gene expression patterns. Dev Dyn. 2005, 232: 633-655. 10.1002/dvdy.20298.
CAS
PubMed
Google Scholar
Gorelick R: Evolution of dioecy and sex chromosomes via methylation driving Muller’s ratchet. Biol J Linn Soc. 2003, 80: 353-368. 10.1046/j.1095-8312.2003.00244.x.
Google Scholar
Piferrer F, Blázquez M, Navarro L, González A: Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen Comp Endocrinol. 2005, 142: 102-110. 10.1016/j.ygcen.2005.02.011.
CAS
PubMed
Google Scholar
Vandeputte M, Dupont-Nivet M, Chavanne H, Chatain B: A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax. Genetics. 2007, 176: 1049-1057.
PubMed Central
PubMed
Google Scholar
Matsumoto Y, Buemio A, Chu R, Vafaee M, Crews D: Epigenetic control of gonadal aromatase (cyp19a1) in temperature-dependent sex determination of red-eared slider turtles. PloS ONE. 2013, 8: e63599-10.1371/journal.pone.0063599.
PubMed Central
CAS
PubMed
Google Scholar
Wu G, Huang C, Chang C: An epigenetic switch mediates the fate determination of ovary in protandrous black porgy fish. Proceedings of the Sixth International Symposium on Vertebrate Sex Determination: 23-27 April 2012; Kona, Hawaii. 2012, 74-
Google Scholar
Piferrer F: Epigenetics of sex determination and gonadogenesis. Dev Dyn. 2013, 242: 360-370. 10.1002/dvdy.23924.
CAS
PubMed
Google Scholar
Baroiller JF, D’Cotta H: Environment and sex determination in farmed fish. Comp Biochem Physiol C Toxicol Pharmacol. 2001, 130: 399-409. 10.1016/S1532-0456(01)00267-8.
CAS
PubMed
Google Scholar
Wessels S, Hörstgen-Schwark G: Selection experiments to increase the proportion of males in Nile tilapia (Oreochromis niloticus) by means of temperature treatment. Aquaculture. 2007, 272: S80-S87.
Google Scholar
Magerhans A, Hörstgen-Schwark G: Selection experiments to alter the sex ratio in rainbow trout (Oncorhynchus mykiss) by means of temperature treatment. Aquaculture. 2010, 306: 63-67. 10.1016/j.aquaculture.2010.05.015.
Google Scholar
Kanaiwa M, Harada Y: Genetic risk involved in stock enhancement of fish having environmental sex determination. Popul Ecol. 2002, 44: 7-15. 10.1007/s101440200001.
Google Scholar
Cotton S, Wedekind C: Population consequences of environmental sex reversal. Conserv Biol. 2009, 23: 196-206. 10.1111/j.1523-1739.2008.01053.x.
PubMed
Google Scholar
Conover DO, Van Voorhees DA: Evolution of a balanced sex ratio by frequency-dependent selection in a fish. Science. 1990, 250: 1556-1558. 10.1126/science.250.4987.1556.
CAS
PubMed
Google Scholar
Conover DO, Voorhees DAV, Ehtisham A: Sex ratio selection and the evolution of environmental sex determination in laboratory populations of Menidia menidia. Evolution. 1992, 46: 1722-1730. 10.2307/2410026.
Google Scholar
Wessels S, Hörstgen-Schwark G: Temperature dependent sex ratios in selected lines and crosses with a YY-male in Nile tilapia (Oreochromis niloticus). Aquaculture. 2011, 318: 79-84. 10.1016/j.aquaculture.2011.04.039.
Google Scholar
Wessels S, Samavati S, Hörstgen-Schwark G: Effect of early temperature treatments on sex differentiation in Nile tilapia, Oreochromis niloticus lines selected for high and low thermo-sensitivity. Aquaculture. 2011, 316: 139-142. 10.1016/j.aquaculture.2011.03.028.
Google Scholar
Lozano C, Gjerde B, Bentsen HB, Dionisio EE, Rye M: Estimates of strain additive genetic, heterosis and reciprocal effects for male proportion in Nile tilapia, Oreochromis niloticus L. Aquaculture. 2011, 312: 32-42. 10.1016/j.aquaculture.2010.12.037.
Google Scholar
Saillant E, Fostier A, Haffray P, Menu B, Thimonier J, Chatain B: Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). J Exp Zool. 2002, 292: 494-505. 10.1002/jez.10071.
PubMed
Google Scholar
Haffray P, Lebègue E, Jeu S, Guennoc M, Guiguen Y, Baroiller JF, Fostier A: Genetic determination and temperature effects on turbot Scophthalmus maximus sex differentiation: An investigation using steroid sex-inverted males and females. Aquaculture. 2009, 294: 30-36. 10.1016/j.aquaculture.2009.05.004.
Google Scholar
Lou B, Xu D, Xu H, Zhan W, Mao G, Shi H: Effect of high water temperature on growth, survival and antioxidant enzyme activities in the Japanese flounder Paralichthys olivaceus. Afr J Agric Res. 2011, 6: 2875-2882.
Google Scholar
Hurley MA, Matthiessen P, Pickering AD: A model for environmental sex reversal in fish. J Theor Biol. 2004, 227: 159-165. 10.1016/j.jtbi.2003.10.010.
CAS
PubMed
Google Scholar
Shen ZG, Fan QX, Hurley MA, Xie CX, Yang W, Zhang YL: A letter to the editor about the article “A model for environmental sex reversal in fish”. J Theor Biol. 2012, 294: 185-
PubMed
Google Scholar
Gutierrez JB, Teem JL: A model describing the effect of sex-reversed YY fish in an established wild population: The use of a Trojan Y chromosome to cause extinction of an introduced exotic species. J Theor Biol. 2006, 241: 333-341. 10.1016/j.jtbi.2005.11.032.
CAS
PubMed
Google Scholar
Cotton S, Wedekind C: Control of introduced species using Trojan sex chromosomes. Trends Ecol Evol. 2007, 22: 441-443. 10.1016/j.tree.2007.06.010.
PubMed
Google Scholar
Gutierrez J: PhD thesis. Mathematical analysis of the use of Trojan sex chromosomes as means of eradication of invasive species. 2009, Florida State University
Google Scholar
Stelkens RB, Wedekind C: Environmental sex reversal, Trojan sex genes, and sex ratio adjustment: conditions and population consequences. Mol Ecol. 2010, 19: 627-646. 10.1111/j.1365-294X.2010.04526.x.
PubMed
Google Scholar
Senior AM, Lim JN, Nakagawa S: The fitness consequences of environmental sex reversal in fish: a quantitative review. Biol Rev Camb Philos Soc. 2012, 87: 900-911. 10.1111/j.1469-185X.2012.00230.x.
PubMed
Google Scholar
Mc Nair Senior A, Krkosek M, Nakagawa S: The practicality of Trojan sex chromosomes as a biological control: an agent based model of two highly invasive Gambusia species. Biol Invasions. 2013, 15: 1765-1782. 10.1007/s10530-013-0407-1.
Google Scholar
Teem JL, Gutierrez JB: Combining the Trojan Y chromosome and daughterless carp eradication strategies. Biol Invasions. 2013, doi: 10.1007/s10530-013-0476-1
Google Scholar
Magerhans A, Müller-Belecke A, Hörstgen-Schwark G: Effect of rearing temperatures post hatching on sex ratios of rainbow trout (Oncorhynchus mykiss) populations. Aquaculture. 2009, 294: 25-29. 10.1016/j.aquaculture.2009.05.001.
Google Scholar
Wedekind C, Evanno G, Székely T, Pompini M, Darbellay O, Guthruf J: Persistent unequal sex ratio in a population of grayling (Salmonidae) and possible role of temperature increase. Conserv Biol. 2013, 27: 229-234. 10.1111/j.1523-1739.2012.01909.x.
PubMed
Google Scholar
Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H: IPCC (2007) Climate Change 2007: The Physical Science Basis. 2007, Cambridge: Cambridge University Press
Google Scholar
Janzen FJ: Climate change and temperature-dependent sex determination in reptiles. Proc Natl Acad Sci U S A. 1994, 91: 7487-7490. 10.1073/pnas.91.16.7487.
PubMed Central
CAS
PubMed
Google Scholar
Hawkes LA, Broderick AC, Godfrey MH, Godley BJ: Investigating the potential impacts of climate change on a marine turtle population. Glob Change Biol. 2007, 13: 923-932. 10.1111/j.1365-2486.2007.01320.x.
Google Scholar
Conover DO, Heins SW: The environmental and genetic components of sex ratio in Menidia menidia (Pisces: Atherinidae). Copeia. 1987, 1987: 732-743. 10.2307/1445667.
Google Scholar
Parker K: A direct method for estimating northern anchovy, Engraulis mordax, spawning biomass. Fish Bull. 1980, 78: 541-544.
Google Scholar
Valenzuela N: Evolution and maintenance of temperature-dependent sex determination. Temperature-Dependent Sex Determination in Vertebrates. Edited by: Valenzuela N, Lance V. 2004, Washington DC: Smithsonian Books, 131-147.
Google Scholar
Karube M, Fernandino JI, Strobl-Mazzulla P, Strüssmann CA, Yoshizaki G, Somoza GM, Patiño R: Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in pejerrey, Odontesthes bonariensis. J Exp Zool A Ecol Genet Physiol. 2007, 307: 625-636.
PubMed
Google Scholar
Nakamura S, Aoki Y, Saito D, Kuroki Y, Fujiyama A, Naruse K, Tanaka M: Sox9b/sox9a2-EGFP transgenic medaka reveals the morphological reorganization of the gonads and a common precursor of both the female and male supporting cells. Mol Reprod Dev. 2008, 75: 472-476. 10.1002/mrd.20764.
CAS
PubMed
Google Scholar
Chen JP, Yuan HM, Wang B, Liang B, Zhang SY: cDNA cloning, mRNA transcription of sox9 gene at early developmental stages in amur sturgeons (Acipenser schrenckii). Zool Res. 2004, 25: 527-533.
Google Scholar
Du QY, Wang FY, Hua HY, Chang ZJ: Cloning and study of adult-tissue-specific expression of Sox9 in Cyprinus carpio. J Genet. 2007, 86: 85-91. 10.1007/s12041-007-0013-z.
CAS
PubMed
Google Scholar
Kobayashi T, Kajiura-Kobayashi H, Guan G, Nagahama Y: Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Dev Dyn. 2008, 237: 297-306. 10.1002/dvdy.21409.
CAS
PubMed
Google Scholar
Yu JH, Li JL, Cao LP, Wu TT, Yang H: Isolation and analysis of sox9 gene derived from yellow catfish Pelteobagrus fulvidraco. Chin J Agric Biotechnol. 2006, 3: 109-114. 10.1079/CJB200693.
CAS
Google Scholar
Luo YS, Hu W, Liu XC, Lin HR, Zhu ZY: Molecular cloning and mRNA expression pattern of Sox9 during sex reversal in orange-spotted grouper (Epinephelus coioides). Aquaculture. 2010, 306: 322-328. 10.1016/j.aquaculture.2010.06.019.
CAS
Google Scholar
Sridevi P, Senthilkumaran B: Cloning and differential expression of FOXL2 during ovarian development and recrudescence of the catfish, Clarias gariepinus. Gen Comp Endocrinol. 2011, 174: 259-268. 10.1016/j.ygcen.2011.08.015.
CAS
PubMed
Google Scholar
Hacker A, Capel B, Goodfellow P, Lovell-Badge R: Expression of Sry, the mouse sex determining gene. Development. 1995, 121: 1603-1614.
CAS
PubMed
Google Scholar
Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R: Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet. 1996, 14: 62-68. 10.1038/ng0996-62.
CAS
PubMed
Google Scholar
Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarkower D: Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol. 1999, 215: 208-220. 10.1006/dbio.1999.9461.
CAS
PubMed
Google Scholar
Smith CA, Katz M, Sinclair AH: DMRT1 is upregulated in the gonads during female-to-male sex reversal in ZW chicken embryos. Biol Reprod. 2003, 68: 560-570.
CAS
PubMed
Google Scholar
Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH: The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature. 2009, 461: 267-271. 10.1038/nature08298.
CAS
PubMed
Google Scholar
Yoshimoto S, Ikeda N, Izutsu Y, Shiba T, Takamatsu N, Ito M: Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development. 2010, 137: 2519-2526. 10.1242/dev.048751.
CAS
PubMed
Google Scholar
Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M: A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci U S A. 2008, 105: 2469-2474. 10.1073/pnas.0712244105.
PubMed Central
CAS
PubMed
Google Scholar
Sawatari E, Shikina S, Takeuchi T, Yoshizaki G: A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol. 2007, 301: 266-275. 10.1016/j.ydbio.2006.10.001.
CAS
PubMed
Google Scholar