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Abstract – For a finite locus model, Markov chain Monte Carlo (MCMC) methods can be used
to estimate the conditional mean of genotypic values given phenotypes, which is also known
as the best predictor (BP). When computationally feasible, this type of genetic prediction pro-
vides an elegant solution to the problem of genetic evaluation under non-additive inheritance,
especially for crossbred data. Successful application of MCMC methods for genetic evaluation
using finite locus models depends, among other factors, on the number of loci assumed in the
model. The effect of the assumed number of loci on evaluations obtained by BP was investi-
gated using data simulated with about 100 loci. For several small pedigrees, genetic evaluations
obtained by best linear prediction (BLP) were compared to genetic evaluations obtained by BP.
For BLP evaluation, used here as the standard of comparison, only the first and second mo-
ments of the joint distribution of the genotypic and phenotypic values must be known. These
moments were calculated from the gene frequencies and genotypic effects used in the simu-
lation model. BP evaluation requires the complete distribution to be known. For each model
used for BP evaluation, the gene frequencies and genotypic effects, which completely specify
the required distribution, were derived such that the genotypic mean, the additive variance, and
the dominance variance were the same as in the simulation model. For lowly heritable traits,
evaluations obtained by BP under models with up to three loci closely matched the evaluations
obtained by BLP for both purebred and crossbred data. For highly heritable traits, models with
up to six loci were needed to match the evaluations obtained by BLP.
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1. INTRODUCTION

Best linear unbiased prediction (BLUP), which can be obtained efficiently
by solving Henderson’s mixed model equations (HMME) [20], is currently the
most widely used method for genetic evaluation. One of the requirements for
building HMME is to calculate the inverse of the variance covariance matrix
of any random effect in the model. Under additive inheritance, efficient algo-
rithms to calculate the required inverse of the genotypic covariance matrix have
been developed for both purebred [18, 19, 27, 28] and crossbred [9, 24] popu-
lations. Under non-additive inheritance, algorithms to calculate the required
inverse have been investigated as well [21,30,35], but these algorithms are not
feasible for large inbred populations [6]. This is especially true for crossbred
populations [23]. However some traits of interest, for example reproductive
or disease resistance traits, are known to have low heritability. Some lowly
heritable traits have been shown to exhibit non-additive gene action [5]. Also,
the breeding strategies used in several livestock species exploit cross-breeding.
Thus, efficient methods for genetic evaluation under non-additive inheritance
for purebred and especially for crossbred populations must be developed.

Finite locus models can easily accommodate non-additive inheritance as
well as crossbred data. The use of the conditional mean of genotypic values
given phenotypes, calculated under the assumption of a finite locus model, has
been suggested as an alternative to BLUP [14, 15, 32]. Due to the fact that,
conditional on the assumed model being correct, the conditional mean min-
imizes the mean square error of prediction, and because selection based on
the conditional mean maximizes the mean of the selected candidates [2, 13],
the conditional mean is also known as the best predictor (BP). Given a fi-
nite locus model, the BP can be calculated exactly using Elston-Stewart type
algorithms [8], approximated using iterative peeling [34], or estimated using
Markov chain Monte Carlo (MCMC) methods [14,15,32]. The computational
efficiency of these methods is directly related to the number of loci considered
in the finite locus model [33]. For Elston-Stewart type algorithms, this rela-
tionship is exponential whereas for MCMC methods a linear relationship can
be maintained by sampling genotypes one locus at a time.

The exact number of quantitative trait loci (QTL) responsible for the ge-
netic variation of a quantitative trait is not known. However, after performing
a meta-analysis on published results from various QTL mapping experiments,
Hayes and Goddard estimate that between 50 and 100 loci are segregating in
dairy cattle and swine populations [17]. For the large pedigrees encountered in
real livestock populations, genetic evaluation by BP using a finite locus model
with 50 to 100 loci is computationally unfeasible. Therefore, in this paper,
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we investigate the minimum number of loci needed for BP evaluations ob-
tained using a finite locus model to be similar to evaluations obtained by best
linear prediction (BLP). Finite locus models with a small number (two through
six) of loci (FLMS) were used to obtain evaluations by BP for data sets gener-
ated using finite locus models with a large number (about 100) of loci (FLML).
These BP evaluations were then compared to BLP evaluations obtained from
the same data sets.

2. METHODS

2.1. Notation

Consider a trait determined by N segregating quantitative trait loci (QTL)
with two alleles at each locus in a population of n individuals (purebred or
crossbred). For convenience, we will use the term reference breed for the pure-
bred or for one of the distinct breed groups in the crossbred population [23].
When only additive and dominance gene action is present, the vector u of
genotypic values of the n individuals can be modeled as

u = 1η +
N∑

i=1

ui

= 1η +
N∑

i=1

Qiδi, (1)

where 1 is an n × 1 vector of ones; η is the trait mean in the reference breed;
ui is the n × 1 vector of genotypic values at locus i; Qi is an n × 3 incidence
matrix relating the genotypic values at locus i to the corresponding individuals,
with each row of Qi being one of the vectors [1 0 0], [0 1 0], or [0 0 1]; δi is
an 3 × 1 vector that contains the genotypic effects at locus i: [ai di −ai]

′
[10].

The parameters of this model are: η, the genotypic effects ai and di, and gene
frequency pi, for locus i = 1, . . . ,N.

In matrix notation, the vector y of phenotypic values of n individuals can be
written as a function of the genotypic values as follows

y = Xβ + Zu + e, (2)

where X is the incidence matrix relating the vector β of fixed effects to y;
Z is the incidence matrix relating u to y; u is the vector of genotypic values
from (1); e is the vector of residuals ∼ N(0, Iσ2

e).
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2.2. Genetic evaluation by BLP

Consider first the situation where u is modeled using a large number of loci
each with a small effect. Under such a model, the distribution of genotypic
values is approximately multivariate normal. As a result, we can assume that u
and y are approximately multivariate normal

[
u
y

]
∼ N
([
µu

µy

]
,

[
G C
C′ V

])
, (3)

where µu is the vector of genotypic means; µy = Xβ; G is the genotypic vari-
ance covariance matrix; C = GZ′ is the covariance matrix between u and y’;
V = ZGZ′ + Iσ2

e is the variance covariance matrix of y. Under multivariate
normality the conditional mean is also the BLP and can be written as

E(u | y) = µu + CV−1(y − µy). (4)

Note that BLP is a function of the first and second moments of the geno-
typic values and the phenotypes. The theory for modeling genetic means is
well known for both purebred and crossbred populations [4, 7]. The theory
for modeling the genetic covariances is also known for both purebred [16, 22]
and crossbred [23] populations. However, the covariance theory for crossbred
populations is more complex. For example, in a non-inbred, unselected, pure-
bred population, if we ignore linkage and if only additive and dominance gene
action are considered, the genetic variance covariance matrix can be written as

G = Aσ2
a + Dσ2

d, (5)

where A is the additive relationship matrix; σ2
a is the additive variance; D is

the dominance relationship matrix; σ2
d is the dominance variance. However, for

example, following Fernando [12] in a two breed situation where inbreeding is
present the genetic variance covariance matrix becomes

G =
25∑

q=1

Cqθq, (6)

where θq is the dispersion parameter corresponding to one of 25 breed-specific
identity states that specify the breed origin for homologous alleles for a pair of
individuals in addition to their identity by descent states [23]; Cq is the matrix
of coefficients for θq. Recursive formulae are available to compute the elements
of Cq [23]. In the absence of inbreeding, the number of dispersion parameters is
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reduced from 25 to 12 [23]. Thus, for small pedigrees given known parameters,
BLP’s can be obtained for both purebred and crossbred populations. For large
pedigrees, under non additive inheritance, BLP’s cannot be obtained for either
purebred or crossbred populations because efficient algorithms to invert G are
not available.

2.3. Genetic evaluation by BP

Consider now the situation where u is modeled using a small number of loci.
In this situation, BP can be calculated by summing over all possible genotype
configurations as follows

E(u | y) = 1η +
∑

g
ug Pr(g | y), (7)

where ug is the vector of of genotypic values that corresponds to the genotype
configuration g, and

Pr(g | y) = Pr(g, y)
Pr(y)

∝ Pr(y | g) Pr(g), (8)

where Pr(y | g) represents the conditional probability of the phenotypes given
genotype configuration g, and Pr(g) represents the probability of the geno-
type configuration g. Under a finite locus model, efficient methods to calculate
these probabilities are available [1, 8]. From equation (7), it can be seen that
the key aspect of this type of genetic evaluation is the correct and efficient
computation of the sum over all possible genotype configurations. This sum
can be calculated exactly using the Elston-Stewart algorithm. This algorithm,
however, is computationally feasible only for simple pedigrees and models
with up to about three loci. For complex pedigrees and models with more than
three loci, MCMC methods hold most promise for the efficient calculation
of the desired sum [33]. In this paper, BP evaluations were calculated using
the Elston-Stewart algorithm whenever it was computationally feasible. When
the use of the Elston-Stewart algorithm was not feasible, BP evaluations were
obtained by using an MCMC method called ESIP [11]. ESIP combines the
Elston-Stewart algorithm with iterative peeling to generate joint samples from
the entire pedigree one locus at a time [11, 33]. In a previous study [33] we
have investigated the performance of ESIP when used for genetic evaluation
by BP. From the results of that study, it was determined that 50 000 samples
from ESIP are sufficient to estimate the BP accurately.
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2.4. Parameters for BLP and BP

The first and second moments needed for genetic evaluation by BLP, were
calculated from the gene frequencies and genotypic effects of the FLML used
to simulate the data. In contrast, for genetic evaluation by BP, the gene fre-
quencies and genotypic effects of the FLMS were chosen, as described below,
such that they yielded the same genotypic mean and the same additive and
dominance variances as the FLML that was used for simulation. For conve-
nience, we define an N1 locus model to be “equivalent” to an N2 locus model
(N2 > N1) if the genotypic means, the additive variances and the dominance
variances of the two models are identical.

2.4.1. Parameters for purebred data models

Consider the simple situation when the gene frequency and the additive ef-
fect at all loci of a given model are equal. For this case, we discuss below how
to assign values to the gene frequencies and the genotypic effects for the FLMS
with N1 loci and the FLML with N2 loci so that they are “equivalent”.

For a simple model of the above type with any even number N of loci, the
genotypic mean (η), additive variance (σ2

a) and dominance variance (σ2
d) can

be written as

η = 2na(p − q) + 2npqd1 + 2npqd2

σ2
a = 2npq[a + d1(q − p)]2 + 2npq[a + d2(q − p)]2 (9)

σ2
d = n(2pqd1)2 + n(2pqd2)2,

where n = N
2 ; a is the genotypic effect of one of the homozygotes at the N

loci; p is the frequency of one of the two alleles at each of the N loci; q =
1 − p; d1 is the genotypic effect of the heterozygote at half of the N loci and
d2 the genotypic effect of the heterozygote at the other half of the N loci.
We simplify further by setting the inbreeding depression (ID = 2npqd1 +

2npqd2) equal to zero. As a result, d1 is equal to −d2. Note that in this case, the
inbreeding depression is zero while the dominance variance is nonzero. After
some algebra, making use of the fact that q = 1 − p and d1 = −d2, the system
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of equations (9) yields

p =
η + 2na

4na
0 = 16a4n4 − a2(8n2η2 + 16n3σ2

a) + η4 + 8nσ2
dη

2 + 4nη2σ2
a (10)

d1 =

√
σ2

d

2p(1 − p)
√

2n
·

The second equation in the (10) can be solved for a in terms of n, η, σ2
a and σ2

d.
Next, by substituting the value obtained for a in the first equation we can obtain
p in terms of n, η, σ2

a and σ2
d, and then by substituting p in the third equation

we can obtain d1 in terms of n, η, σ2
a and σ2

d. Thus, for simple models of this
type, the gene frequencies and genotypic effects are completely determined by
the genotypic mean, and the additive and dominance variances.

Now consider the two models of interest, a FLMS with N1 loci, and a FLML
with N2 loci. Under the assumptions described above, the gene frequencies and
genotypic effects for each of the two models can be obtained by solving the
system of equations given in (10) with n = N1

2 and n = N2
2 respectively, given

the assigned values for η, σ2
a and σ2

d. When the number of loci (N) is uneven,
at the last locus, the heterozygous genotype is assigned an effect equal to zero
(dN = 0).

2.4.2. Parameters for crossbred data models

For the purpose of this paper, crossbred data are simulated by adding k extra
loci to the purebred FLML. Thus, crossbred data are simulated with a FLML
with N2 + k loci, where the N2 loci have the same gene frequency in all breeds
and the k loci have different gene frequencies for different breeds. The values
for the gene frequencies and genotypic effects for a FLMS with N1 + k loci
are determined, so that it is “equivalent” to the FLML with N2 + k loci, as
follows. First, the FLMS and the FLML are made “equivalent” with respect to
N1 and N2 loci under a purebred setting. Next, the same gene frequencies and
genotypic effects are used for the k extra loci in both models.

2.5. Simulation study

2.5.1. Purebred data

Hypothetical pedigrees. Three hypothetical pedigrees were used to investi-
gate the effect of the number of loci on genetic evaluation by BP. The first
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1                        2                         3                        4                         5                         6

7                          8                                                  9                      10

11*                     12*                                              13*                   14*

Figure 1. Simple Pedigree. Genetic evaluations were obtained for individuals marked
by *.

2 3 4 5 6

7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22

23 24 25 26 27 28

29 30 31 32 33 34

35 36 37 38 39 40

42 43 4441* * * *

1

Figure 2. Extended Pedigree. Genetic evaluations were obtained for individuals
marked by *.

hypothetical pedigree, shown in Figure 1, has 14 individuals, no loops and will
be referred to as the simple pedigree.

The second pedigree, shown in Figure 2, was obtained by extending the first
pedigree for five more generations. This pedigree of 44 individuals has eight
generations, no loops and will be referred to as the extended pedigree.
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1                        2                         3                        4                         5                         6

7                          8                                                  9                      10

11                       12                                               13                      14

15                      16                                               17                       18

19                      20                                               21                      22

23                     24                                                25                      26

27                    28                                                29                      30

31*                 32*                                               33*                   34*

Figure 3. Inbred Pedigree. Genetic evaluations were obtained for individuals marked
by *.

The third pedigree, shown in Figure 3, is a highly inbred pedigree with many
loops. This pedigree of 34 individuals has eight generations, several loops
generated by repeated half sib matings and will be referred to as the inbred
pedigree.

Purebred data were simulated using a FLML with 100 loci. At each of the
100 loci, the gene frequency was p = 0.5 and the additive effect was a =
0.2828. Of the 100 loci, at each of 50, the dominance effect was d1 = 0.2828,
and at each of the remaining 50, the dominance effect was d2 = −0.2828. These
values yield η = 0, σ2

a = 4 and σ2
d = 2. Two values were used for the error
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Table I. Situations simulated for the purebred case for four different pedigrees. No.
missing denotes the number of parents with missing phenotypic information. h2

n de-
notes the narrow sense heritability, and h2

b denotes the broad sense heritability.

Situation Pedigree No. missing h2
n h2

b

1 simple 0 0.1 0.15

2 simple 0 0.4 0.6

3 extended 0 0.1 0.15

4 extended 0 0.4 0.6

5 extended 10 0.1 0.15

6 extended 10 0.4 0.6

7 extended 15 0.1 0.15

8 extended 15 0.4 0.6

9 inbred 0 0.1 0.15

10 real 0 0.1 0.15

11 real 0 0.1 0.11

variance: σ2
e = 34 and σ2

e = 4, which combined with the genetic parameters
yield two levels of narrow sense heritability: 0.1 and 0.4, with corresponding
broad sense heritabilities of 0.15 and 0.6. In order to examine the effect of
pedigree structure, missing data, and genetic parameters on genetic evaluations
by BP using various FLMS, nine situations were simulated for the hypothetical
pedigrees of the purebred case (Tab. I).

The first four situations cover all possible combinations of two heritabilities
(0.1 and 0.4) and two types of non inbred pedigrees (simple and extended).
This design allows us to examine the main effects of heritability and pedigree
size as well as the interactions between these two factors. Situations 3, 4, 5,
6, 7, 8 cover all possible combinations of two heritabilities (0.1 and 0.4) and
three patterns of missing data: all individuals have phenotypic data; all indi-
viduals in the first two generations have missing data (10 individuals); all sires
in the pedigree have missing data (15 individuals). This design allows us to ex-
amine the main effects of heritability and missing data as well as the possible
interactions between these two factors. Situation 9, which differs from situa-
tions 1 and 3 only in the pedigree type, is considered to examine the effect of
the presence of inbreeding.

The parameters of the FLMS used to calculate BP’s for the data gener-
ated according to the nine situations described above, are given in Table II.
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Table II. Parameters for the FLMS used to analyze purebred data for situations 1−10.
The second column contains the number of loci in the respective FLMS; a denotes the
additive effect at all loci; d1 the dominance effect at half of the loci; d2 the dominance
effect at the other half of the loci; and p the gene frequency at each locus. * Here the
dominance effect of the third locus was set to 0.

FLMS No. loci a d1 d2 p

FLM(2) 2 2 2 −2 0.5

FLM(3) 3∗ 1.63 2 −2 0.5

FLM(4) 4 1.4142 1.4142 −1.4142 0.5

FLM(6) 6 1.1547 1.1547 −1.1547 0.5

Table III. Parameters for the FLMS used to analyze purebred data for situation 11.
The second column contains the number of loci in the respective FLMS; a denotes the
additive effect at all loci; d1 the dominance effect at half of the loci; d2 the dominance
effect at the other half of the loci; and p the gene frequency at each locus. * Here the
dominance effect of the third locus was set to 0.

FLMS No. loci a d1 d2 p

FLM(3) 3∗ 1.5495 1.3685 −1.3685 0.1558

Note that FLM(N1) denotes the FLMS with N1 loci, and that each of the FLMS
in Table II yields η = 0, σ2

a = 4 and σ2
d = 2.

Real pedigree. The pedigree structure of a real swine resource population [25]
was also used to study the effect of the number of loci on genetic evaluation by
BP for a pedigree of moderate size. The pedigree used has a total of 555 an-
imals. Two situations (10 and 11 in Tab. I) were simulated for this pedigree.
Situation 10 differs from situations 1, 3 and 9 only in the pedigree used. The
data generated according to situation 10 were analyzed using only the FLM(3)
with the parameters shown in Table II. For situation 11, a FLML with 100 loci
was used to simulate data, each of the 100 loci having a gene frequency of:
p = 0.427, with an additive effect a = 0.219. Of the 100 loci, at each of 50,
the dominance effect was d1 = 0.104, and at each of the remaining 50, the
dominance effect was d2 = −0.104. These values yield η = −3.2, σ2

a = 2.36
and σ2

d = 0.26. Combined with an error variance σ2
e = 21 these genetic pa-

rameters yield a trait with narrow sense heritability equal to 0.1, and a broad
sense heritability equal to 0.11. The data generated according to situation 11
was analyzed using only the FLM(3) with the parameters shown in Table III.
These parameters also yield η = −3.2, σ2

a = 2.36 and σ2
d = 0.26.
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Table IV. Situations simulated for the two-breed case for two pedigrees. h2
n denotes

the narrow sense heritability, and h2
b denotes the broad sense heritability.

Situation Pedigree h2
n h2

b

1 simple 0.1 0.142

2 simple 0.4 0.57

3 extended 0.1 0.142

4 extended 0.4 0.57

2.5.2. Crossbred data

Two hypothetical pedigrees were used to investigate the effect of the number
of loci on genetic evaluations by BP. The first pedigree has the same structure
as the one shown in Figure 1. However, individuals 1, 2, 5, 6, 7 and 10 are of
breed A, while individuals 3, 4, 8, and 9 are of breed B. Thus, individuals 11,
12, 13 and 14 are crossbred. The second pedigree is also a two-breed pedi-
gree obtained by extending the first pedigree for five more generations. This
extension is done in the same way as in the purebred case, but starting with
generation three, sires from alternate breeds are used in alternate generations.
Thus, an extended two-breed pedigree with 44 individuals and no loops was
generated.

Two-breed data were simulated using a FLML with 100 + 1 loci. The gene
frequency and genotypic effects for the first 100 loci in both breeds were
assigned the same values as the ones used for the purebred case for situa-
tions 1−10. For breed A, the extra locus had a gene frequency pA = 0.9, while
for breed B the extra locus had a gene frequency pB = 0.1. The genotypic ef-
fects for the extra locus in both breeds were: a = 2 and d1 = 0. These values
yield ηA = 1.6, ηB = −1.6, σ2

aA
= σ2

aB
= 4.72 and σ2

dA
= σ2

dB
= 2. Two

values were used for the error variance: σ2
e = 5.08 or σ2

e = 40.48, which com-
bined with the genetic parameters yield two levels of narrow sense heritability:
0.1 and 0.4 with corresponding broad sense heritabilities of 0.142 and 0.57.
In order to examine the effect of pedigree structure and genetic parameters on
genetic evaluations by BP using various FLMS, four situations were simulated
for the two-breed case (Tab. IV).

No missing data were present in these four situations. The design of the
simulation allows us to examine the main effects of heritability and pedigree
size as well as the interactions between these two factors. Also, it allows us
to compare the effect of the number of loci on genetic evaluations by BP in
crossbred versus purebred situations.
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In the following, FLM(N1, k) denotes the FLMS with N1 + k loci, where N1

are the loci that have the same gene frequencies in both breeds and k are the
loci that have different gene frequencies in the two breeds. For the BP analysis
under the crossbred model FLM(N1,k), the gene frequencies and genotypic
effects for the N1 loci are identical to those from the BP analysis under the
purebred model FLM(N1) (Tab. II) used for situations 1−10. For the extra k = 1
locus, the gene frequencies and genotypic effects used in the simulation were
also used in the analysis.

2.5.3. Comparison between BLP and BP evaluations

For each purebred and crossbred situation considered, 100 replicates of the
pedigree phenotypes were generated, following the missing pattern of each sit-
uation. However, for purebred situations 1−9 and all crossbred situations, the
four individuals in the last generation (see Figs. 1, 2, 3) were always assumed
to have missing phenotypic data. Genetic evaluations by BLP and BP were then
calculated for these four individuals. For situations 10 and 11, only one of the
terminal animals was assumed to have missing phenotypic data. Genetic eval-
uations by BLP and BP were computed for this animal. For each data set, BP
evaluations were obtained under one or more FLMS. For traits with low her-
itability, BP evaluations were obtained under FLM(2), FLM(3) and FLM(4)
for purebred data and FLM(2,1) for crossbred data. For traits with high her-
itability, BP evaluations were obtained under FLM(2), FLM(3), FLM(4) and
FLM(6) for purebred data and FLM(2,1), FLM(3,1) and FLM(4,1) for cross-
bred data. In each replicate, for each individual evaluated, the absolute differ-
ence between BLP and BP evaluations was calculated and then scaled by the
genetic standard deviation. We will refer to these scaled absolute differences
as absolute errors of BP under a FLMS. Thus, except for situations 10 and
11, 400 absolute errors were obtained for each analysis. However, because full
sibs with no phenotypic data on themselves or their progeny have the same ge-
netic evaluations, only 200 of these values are unique. For situations 10 and 11,
100 absolute errors were computed for each analysis. Figures 4 and 5 summa-
rize the corresponding 200 values for each of the nine situations of the purebred
data case, and each of the four situations of the crossbred data case, in the form
of box plots. Figure 4 also summarizes the corresponding 100 values for situa-
tions 10 and 11. A box plot is a graphical representation of a distribution [29].
The lower edge of the gray box represents the 25th percentile, the line within
the gray box the 50th percentile, and the upper edge the 75th percentile. The
lower and the upper whiskers represent the minimum and the maximum.
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By visual inspection of the box plots for each situation, we determined the
number of loci (in the FLMS) that is adequate for the BP evaluation to closely
match the BLP evaluation. For the FLMS that were so deemed to have an
adequate number of loci, the correlation between the BP evaluation and the
BLP evaluation was greater than or equal to 0.995.

By visual inspection of these figures, we can also make statistical inferences
about the impact of heritability, pedigree size, and missing data on the number
of loci required for the BP evaluation to closely match the BLP evaluation.

3. RESULTS

3.1. Purebred analysis

3.1.1. Hypothetical pedigrees

Figure 4 summarizes the magnitude of the absolute errors of BP under
FLM(2) up to FLM(6) for situations 1−9.

The results obtained for the first four situations allow us to assess the effect
of heritability and pedigree size on the number of loci needed for the BP evalu-
ation to closely match the BLP evaluation. For a lowly heritable trait modeled
with a FLML with 100 loci, FLMS with two to three loci were adequate for BP
evaluations to closely match the BLP evaluations (situations 1 and 3 in Fig. 4).
For a highly heritable trait modeled with a FLML with 100 loci, FLMS with six
loci were adequate (situations 2 and 4 in Fig. 4). The size of the pedigree had
no impact on the number of loci needed (situations 1 versus 3, and 2 versus 4
in Fig. 4).

The results obtained for situations 3, 4, 5, 6, 7 and 8 allow us to assess the
effect of heritability and missing data on the number of loci needed for the
BP evaluation to closely match the BLP evaluation. For these six situations we
observe again that, highly heritable traits (situations 4, 6, and 8 in Fig. 4), need
to be evaluated using FLMS with a larger number of loci than lowly heritable
traits (situations 3, 5, and 7 in Fig. 4). Missing data had no impact on the
number of loci needed (situations 5, 7 versus 3, and 6, 8 versus 4 in Fig. 4).

When inbreeding is present (situation 9 in Fig. 4), the magnitude of the abso-
lute errors obtained with FLM(2) and FLM(3) was higher than the magnitude
reached under these models in situations 1 and 3, where inbreeding is absent.
For situation 9, evaluations by BP under FLM(4) closely match evaluations by
BLP.
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Figure 4. Box plots of 200 (100) values of the absolute errors for BP evaluations under
FLM(N), N = 2, 3, 4 or 6 (the X axis of the plots) for situations 1−9 (10, 11) of the
purebred case. The units of the Y axis are genetic standard deviations.

3.1.2. Real pedigree

Figure 4 summarizes the magnitude of the absolute errors of BP under
FLM(3) for situations 10 and 11. For situation 10, the correlation between
the BP evaluation and the BLP evaluation was greater than 0.995 and thus
FLM(3) was deemed to have an adequate number of loci. For situation 11, the
correlation between the BP evaluation and the BLP evaluation was equal to
0.988 and thus FLM(3) was deemed not to have an adequate number of loci.
However, for both situations 10 and 11, BP evaluations were estimated using
only 10 000 MCMC samples due to computational constrains. As a result BP
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Figure 5. Box plots of 200 values of the absolute errors for BP evaluations under
FLM(N, k), N = 2, 3 and 4 and k = 1 (the X axis of the plots) for situations 1−4 of
the crossbred case. The units of the Y axis are genetic standard deviations.

evaluations were estimated with less accuracy. For situation 11, FLMS with
4 loci might be needed.

3.2. Crossbred analysis

Figure 5 summarizes the magnitude of the absolute errors of BP under
FLM(2,1) up to FLM(4,1) for the four situations of the two-breed case.

For situations 1 and 3 (Fig. 5), evaluations by BP using FLM(2,1) closely
match evaluations by BLP. Thus, for a lowly heritable trait modeled with a
FLML with 100 + 1 loci, a three locus model was adequate for the BP evalua-
tions to closely match the BLP evaluations. Situations 2 and 4 of the two-breed
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case (Fig. 5), correspond to a highly heritable trait (Tab. IV). For these two sit-
uations, FLMS with a larger number of loci are needed (Fig. 5). The size of the
pedigree had no impact on the number of loci needed (situations 1 versus 3,
and 2 versus 4 in Fig. 5).

4. DISCUSSION

For data simulated using FLML with 100 or 101 loci, evaluations by BP
under FLMS with two to six loci matched closely the BLP evaluations. As
explained in [33], under dominance inheritance, when inbreeding or cross-
breeding is practiced the additive genotypic value of an animal is not a good
indicator of the performance of future offspring. Thus, in this paper we did
not obtain separate BPs for the additive and the dominance components of the
genotypic value. BPs of the genotypic value were calculated instead. The BPs
of the genotypic values of future offspring can then be used to select parents.

When MCMC is used to compute the conditional mean (BP), the complete
posterior distribution of the genotypic values is available. Thus, the accuracy
of the BP evaluations can be represented using the statistic of choice to sum-
marize the posterior distribution (posterior confidence interval, standard devi-
ation, etc.). Finite locus models with small number of loci could also be useful
for the problem of parameter estimation in crossbreed populations. Under a
linear model, even in a purebred population, large amounts of data are needed
to obtain estimates of non-additive effects [3, 12]. In a two breed population
with inbreeding, estimates of 5 location and 25 dispersion parameters [23] are
needed. Thus, even larger amounts of data would be needed in this case. This,
however, might be impractical in livestock populations. By using a finite lo-
cus model with a small number of loci, the number of parameters that need
to be estimated could be reduced significantly [14, 26, 32]. Thus, parameter
estimation in multibreed populations would become practical.

Multiple trait genetic evaluation is warranted only when the traits of in-
terest are correlated. The standard assumption underlying the genetic cor-
relation between traits is pleiotropy [2]. Loci that affect a particular trait
combination will have to be modeled separately. For example, suppose loci
1 through 50 affect trait A, loci 51 through 100 affect trait B, and loci
101 through 150 affect both trait A and B. According to the results of this
paper, 2 to 6 loci would be needed to model the set of loci (1−50) that af-
fect only trait A, another 2 to 6 for those (51−100) that affect only trait B,
and yet another 2 to 6 for those (101−150) that affect both traits A and B.
In general, for k traits there can be up to s =

∑k
i=1 Ci

k distinct subsets of
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polygenic loci, where Ci
k =

k!
i!(k−i)! . When k = 3, s = 7 for the trait combina-

tions {A, B,C}, {A, B}, {A,C}, {B,C}, {A}, {B}, {C}. Some of these subsets may
be empty or have only a few loci. Thus, the number of loci in the FLMS model
may be lower than the maximum of s × 6. MCMC methods such as the re-
versible jump algorithm [31] can be used to determine the minimum number of
loci needed in the FLMS for each of the s subsets. Further research in MCMC
methods is needed to make this approach feasible in large livestock pedigrees.
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