Biscarini F, Nicolazzi EL, Stella A, Boettcher PJ, Gandini G. Challenges and opportunities in genetic improvement of local livestock breeds. Front Genet. 2015;6:33.
Article
PubMed
PubMed Central
Google Scholar
Bruford MW, Ginja C, Hoffmann I, Joost S, Orozco-terWengel P, Alberto FJ, et al. Prospects and challenges for the conservation of farm animal genomic resources, 2015–2025. Front Genet. 2015;6:314.
Article
PubMed
PubMed Central
CAS
Google Scholar
Verrier E, Tixier-Boichard M, Bernigaud R, Naves M. Conservation and value of local livestock breeds: usefulness of niche products and/or adaptation to specific environments. Anim Genet Resour Inf. 2005;36:21–31.
Article
Google Scholar
Čandek-Potokar M, Nieto R. European local pig breeds—diversity and performance: a study of project TREASURE. London: IntechOpen; 2019.
Book
Google Scholar
Margeta V, Gvozdanović K, Kušec G, Djurkin Kušec I, Batorek-Lukač N. Black Slavonian (Crna slavonska) pig. In: Čandek-Potokar M, Nieto R, editors. european local pig breeds—diversity and performance. A study of project TREASURE. London: IntechOpen; 2019. https://doi.org/10.5772/intechopen.83763.
Chapter
Google Scholar
Menčik S, Klišanić V, Špehar M, Mahnet Ž, Škorput D, Luković Z, et al. Reproductive parameters in a Banija Spotted pig breed population during breed revitalization. Vet Arh. 2019;89:183–99.
Article
Google Scholar
Šalehar A. The Krškopolje pig. Stočarstvo. 1994;48:313–9.
Google Scholar
Margeta P, Margeta V, Budimir K. How black is really black Slavonian pig? Acta Agric Slov. 2013;4:25–8.
Google Scholar
Petrović M, Mijatović M, Radojković DD, Radović Č, Marinkov G, Stojanović L. Genetic resources in pig breeding—Moravka. Biotechnol Anim Husb. 2007;23:1–11.
Google Scholar
Karolyi D, Luković Z, Salajpal K, Škorput D, Vnučec I, Mahnet Ž, et al. Turopolje pig (Turopoljska svinja). In: Čandek-Potokar M, Nieto R, editors., et al., European local pig breeds—diversity and performance. A study of project TREASURE. London: IntechOpen; 2019.
Google Scholar
Radović Č, Petrović M, Gogić M, Radojković D, Živković V, Stoiljković N, et al. Autochthonous breeds of Republic of Serbia and valuation in food industry: Opportunities and challenges. In: Čandek-Potokar M, Nieto R, editors., et al., European local pig breeds—diversity and performance. A study of project TREASURE. London: IntechOpen; 2019.
Google Scholar
Salamon D, Margeta P, Klisanic V, Mencik S, Karolyi D, Mahnet Z, et al. Genetic diversity of the Banija spotted pig breed using microsatellite markers. J Central Eur Agric. 2019;20:36–42.
Article
Google Scholar
Gvozdanović K, Margeta V, Margeta P, Djurkin Kušec I, Galović D, et al. Genetic diversity of autochthonous pig breeds analyzed by microsatellite markers and mitochondrial DNA D-loop sequence polymorphism. Anim Biotechnol. 2019;30:242–51.
Article
PubMed
CAS
Google Scholar
Škorput D, Gvozdanović K, Klišanić V, Menčik S, Karolyi D, Margeta P, et al. Genetic diversity in Banija spotted pig: pedigree and microsatellite analyses. J Central Eur Agric. 2018;19:871–6.
Article
Google Scholar
Gvozdanović K, Škorput D, Kušec ID, Salajpal K, Kušec G. Estimation of population differentiation using pedigree and molecular data in Black Slavonian pig. Acta Fytotechn Zootechn. 2020;23:241–9.
Article
Google Scholar
Zsolnai A, Radnóczy L, Fésüs L, Anton I. Do Mangalica pigs of different colours really belong to different breeds? Arch Anim Breed. 2006;49:477–83.
Article
Google Scholar
Molnár J, Tóth G, Stéger V, Zsolnai A, Jánosi A, Mohr A, et al. Mitochondrial D-loop analysis reveals low diversity in Mangalica pigs and their relationship to historical specimens. J Anim Breed Genet. 2013;130:312–20.
Article
PubMed
CAS
Google Scholar
Flisar T, Jevsinek Skok D, Malovrh S, Kovac M. Genetic profile of Krskopolje pig based on microsatellite markers. In Proceedings of the 26th International DAGENE Symposium 2015: 17–19 June 2015; Dobrna. 2015.
Druml T, Salajpal K, Dikic M, Urosevic M, Grilz-Seger G, Baumung R. Genetic diversity, population structure and subdivision of local Balkan pig breeds in Austria, Croatia, Serbia and Bosnia-Herzegovina and its practical value in conservation programs. Genet Sel Evol. 2012;44:5.
Article
PubMed
PubMed Central
Google Scholar
Harcet M, Đikić M, Gamulin V. Low genetic diversity of the Turopolje pig breed. Food Technol Biotechnol. 2006;44:105–9.
CAS
Google Scholar
Lukić B, Ferenčaković M, Šalamon D, Čačić M, Orehovački V, Iacolina L, et al. Conservation genomic analysis of the Croatian indigenous Black Slavonian and Turopolje pig breeds. Front Genet. 2020;11:261.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muñoz M, Bozzi R, García-Casco J, Núñez Y, Ribani A, Franci O, et al. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Sci Rep. 2019;9:13546.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muñoz M, Bozzi R, García F, Núñez Y, Geraci C, Crovetti A, et al. Diversity across major and candidate genes in European local pig breeds. PLoS One. 2018;13:e0207475.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bovo S, Ribani A, Muñoz M, Alves E, Araujo JP, Bozzi R, et al. Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems. Genet Sel Evol. 2020;52:33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukač NB, Tomažin U, Škrlep M, Kastelic A, Poklukar K, Čandek-Potokar M. Krškopoljski prašič (Krškopolje Pig). In: Čandek-Potokar M, Nieto R, editors. European local pig breeds—diversity and performance. A study of project TREASURE. London: IntechOpen; 2019.
Google Scholar
Yang B, Cui L, Perez-Enciso M, Traspov A, Crooijmans RPMA, Zinovieva N, et al. Genome-wide SNP data unveils the globalization of domesticated pigs. Genet Sel Evol. 2017;49:71.
Article
PubMed
PubMed Central
Google Scholar
Sargolzaei M, Iwaisaki H, Colleau JJ. CFC: a tool for monitoring genetic diversity. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production: 13–18 August, 2006; Belo Horizonte. 2006.
Malécot G, Blaringhem L. Les mathématiques de l’hérédité. Paris: Masson & Cie; 1948.
Google Scholar
Falconer DS, Mackay TFC. Introduction to quantitative genetics. Harlow: Prentice Hall; 1996.
Google Scholar
Gutierrez JP, Goyache F. A note on ENDOG: a computer program for analysing pedigree information. J Anim Breed Genet. 2005;122:172–6.
Article
CAS
PubMed
Google Scholar
FAO, Food and Agriculture Organization of the United Nations. Secondary guidelines for development of national farm animal genetic resources management plans. In Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers. 2004. http://dad.fao.org/en/refer/library/guidelin/marker.pdf/. Accessed 23 Sep 2019.
Margeta P, Margeta V, Gvozdanović K, Galović D, Djurkin Kušec I, Kušec G. Microsatellite multiplex method for potential use in Black Slavonian pig breeding. Acta Agric Slov. 2016;2016:S66-70.
Google Scholar
Gvozdanović K, Djurkin Kušec I, Margeta P, Salajpal K, Džijan S, Bošnjak Z, et al. Multiallelic marker system for traceability of Black Slavonian pig meat. Food Control. 2020;109:106917.
Article
CAS
Google Scholar
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. 2004. http://www.genetixuniv-montp2fr/genetix/genetixhtm/ Accessed 10 Feb 2022.
Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour. 2014;14:209–14.
Article
CAS
PubMed
Google Scholar
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28:2537–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamvar ZN, Tabima JF, Grunwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281.
Article
PubMed
PubMed Central
Google Scholar
Core Team R. R: The R Project for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2020.
Google Scholar
Dray S, Dufour AB. The ade4 Package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.
Article
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.
Article
CAS
PubMed
Google Scholar
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15:1179–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40.
Article
PubMed
PubMed Central
Google Scholar
Barbato M, Orozco-terWengel P, Tapio M, Bruford MW. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front Genet. 2015;6:109.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sved JA, Feldman MW. Correlation and probability methods for one and two loci. Theor Popul Biol. 1973;4:129–32.
Article
CAS
PubMed
Google Scholar
Rosenberg NA, Li LM, Ward R, Pritchard JK. Informativeness of genetic markers for inference of ancestry. Am J Hum Genet. 2003;73:1402–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA. diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol. 2013;4:782–8.
Article
Google Scholar
Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22:1–19.
Article
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer International Publishing; 2016.
Book
Google Scholar
McQuillan R, Leutenegger A-L, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, et al. Runs of homozygosity in European populations. Am J Hum Genet. 2008;83:359–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, et al. RIdeogram : Drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci. 2020;6:e251.
Article
PubMed
PubMed Central
Google Scholar
Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.
CAS
PubMed
Google Scholar
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnsson M, Whalen A, Ros-Freixedes R, Gorjanc G, Chen CY, Herring WO, et al. Genetic variation in recombination rate in the pig. Genet Sel Evol. 2021;53:54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fitak RR. OptM: estimating the optimal number of migration edges on population trees using Treemix. Biol Methods Protoc. 2021;6:bpab017.
Article
PubMed
PubMed Central
Google Scholar
Milanesi M, Capomaccio S, Vajana E, Bomba L, Garcia JF, Ajmone-Marsan P, et al. BITE: an R package for biodiversity analyses. bioRxiv. 2017. https://doi.org/10.1101/181610.
Article
Google Scholar
Gautier M, Vitalis R. rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics. 2012;28:1176–7.
Article
CAS
PubMed
Google Scholar
Höglund JK, Sahana G, Brøndum RF, Guldbrandtsen B, Buitenhuis B, Lund MS. Fine mapping QTL for female fertility on BTA04 and BTA13 in dairy cattle using HD SNP and sequence data. BMC Genomics. 2014;15:790.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mańkowska A, Brym P, Paukszto Ł, Jastrzębski JP, Fraser L. Gene polymorphisms in boar spermatozoa and their associations with post-thaw semen auality. Int J Mol Sci. 2020;21:1902.
Article
PubMed Central
CAS
Google Scholar
Hiltpold M, Niu G, Kadri NK, Crysnanto D, Fang Z-H, Spengeler M, et al. Activation of cryptic splicing in bovine WDR19 is associated with reduced semen quality and male fertility. PLoS Genet. 2020;16:e1008804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Held T, Barakat AZ, Mohamed BA, Paprotta I, Meinhardt A, Engel W, et al. Heat-shock protein HSPA4 is required for progression of spermatogenesis. Reproduction. 2011;142:133–44.
Article
CAS
PubMed
Google Scholar
van Son M, Tremoen NH, Gaustad AH, Våge DI, Zeremichael TT, Myromslien FD, et al. Transcriptome profiling of porcine testis tissue reveals genes related to sperm hyperactive motility. BMC Vet Res. 2020;16:161.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lü MD, Han XM, Ma YF, Irwin DM, Gao Y, Deng JK, et al. Genetic variations associated with six-white-point coat pigmentation in Diannan small-ear pigs. Sci Rep. 2016;6:27534.
Article
PubMed
PubMed Central
CAS
Google Scholar
Iqbal A, Kim YS, Kang JM, Lee YM, Rai R, Jung JH, et al. Genome-wide association study to identify quantitative trait loci for meat and carcass quality traits in Berkshire. Asian-Australas J Anim Sci. 2015;28:1537–44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Waide EH, Tuggle CK, Serão NVL, Schroyen M, Hess A, Rowland RRR, et al. Genomewide association of piglet responses to infection with one of two porcine reproductive and respiratory syndrome virus isolates. J Anim Sci. 2017;95:16–38.
CAS
PubMed
Google Scholar
Martinez ML, Machado MA, Nascimento CS, Silva MV, Teodoro RL, Furlong J, et al. Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle. Genet Mol Res. 2006;5:513–24.
CAS
PubMed
Google Scholar
Shin D, Lee C, Park KD, Kim H, Cho KH. Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value. Asian-Australas J Anim Sci. 2017;30:309–19.
Article
CAS
PubMed
Google Scholar
Amaral AJ, Bressan MC, Almeida J, Bettencourt C, Moreira O, Sá J, et al. Combining genome-wide association analyses and gene interaction networks to reveal new genes associated with carcass traits, meat quality and fatty acid profiles in pigs. Livest Sci. 2019;220:180–9.
Article
Google Scholar
Murgiano L, D’Alessandro A, Egidi MG, Crisà A, Prosperini G, Timperio AM, et al. Proteomics and transcriptomics investigation on longissimus muscles in Large White and Casertana pig breeds. J Proteome Res. 2010;9:6450–66.
Article
CAS
PubMed
Google Scholar
Hamill RM, McBryan J, McGee C, Mullen AM, Sweeney T, Talbot A, et al. Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork. Meat Sci. 2012;92:440–50.
Article
CAS
PubMed
Google Scholar
Ding R, Yang M, Quan J, Li S, Zhuang Z, Zhou S, et al. Single-locus and multi-locus genome-wide association studies for intramuscular fat in Duroc pigs. Front Genet. 2019;10:619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le TH, Christensen OF, Nielsen B, Sahana G. Genome-wide association study for conformation traits in three Danish pig breeds. Genet Sel Evol. 2017;49:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bergamaschi M, Maltecca C, Fix J, Schwab C, Tiezzi F. Genome-wide association study for carcass quality traits and growth in purebred and crossbred pigs. J Anim Sci. 2020;98:skz360.
Article
PubMed
Google Scholar
Melo C, Quintanilla R, Gallardo D, Zidi A, Jordana J, Díaz I, et al. Association analysis with lipid traits of 2 candidate genes (LRP12 and TRIB1) mapping to a SSC4 QTL for serum triglyceride concentration in pigs. J Anim Sci. 2013;91:1531–7.
Article
CAS
PubMed
Google Scholar
Mooij HL, Bernelot Moens SJ, Gordts PL, Stanford KI, Foley EM, van den Boogert MA, et al. Ext1 heterozygosity causes a modest effect on postprandial lipid clearance in humans. J Lipid Res. 2015;56:665–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung EJ, Park HB, Lee JB, Yoo CK, Kim BM, Kim HI, et al. Genome-wide association study identifies quantitative trait loci affecting hematological traits in an F2 intercross between Landrace and Korean native pigs. Anim Genet. 2014;45:534–41.
Article
CAS
PubMed
Google Scholar
Li Y, Wang M, Li Q, Gao Y, Li Q, Li J, et al. Transcriptome profiling of longissimus lumborum in Holstein bulls and steers with different beef qualities. PLoS One. 2020;15:e0235218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tizioto PC, Decker JE, Taylor JF, Schnabel RD, Mudadu MA, Silva FL, et al. Genome scan for meat quality traits in Nelore beef cattle. Physiol Genomics. 2013;45:1012–20.
Article
CAS
PubMed
Google Scholar
Leal-Gutiérrez JD, Elzo MA, Johnson DD, Hamblen H, Mateescu RG. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC Genomics. 2019;20:151.
Article
PubMed
PubMed Central
Google Scholar
Felix JF, Bradfield JP, Monnereau C, van der Valk RJP, Stergiakouli E, Chesi A, et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum Mol Genet. 2016;25:389–403.
Article
CAS
PubMed
Google Scholar
Mariani E, Summer A, Ablondi M, Sabbioni A. Genetic variability and management in Nero di Parma swine breed to preserve local diversity. Animals (Basel). 2020;10:538.
Article
Google Scholar
Zanella R, Peixoto JO, Cardoso FF, Cardoso LL, Biegelmeyer P, Cantão ME, et al. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data. Genet Sel Evol. 2016;48:24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gutiérrez JP, Cervantes I, Molina A, Valera M, Goyache F. Individual increase in inbreeding allows estimating effective sizes from pedigrees. Genet Sel Evol. 2008;40:359–78.
Article
PubMed
PubMed Central
Google Scholar
Laval G, Iannuccelli N, Legault C, Milan D, Groenen MAM, Giuffra E, et al. Genetic diversity of eleven European pig breeds. Genet Sel Evol. 2000;32:187.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leroy G, Mary-Huard T, Verrier E, Danvy S, Charvolin E, Danchin-Burge C. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse. Genet Sel Evol. 2013;45:1.
Article
PubMed
PubMed Central
Google Scholar
Zhao J, Li T, Zhu C, Jiang X, Zhao Y, Xu Z, et al. Selection and use of microsatellite markers for individual identification and meat traceability of six swine breeds in the Chinese market. Food Sci Technol Int. 2018;24:292–300.
Article
CAS
PubMed
Google Scholar
Charoensook R, Gatphayak K, Brenig B, Knorr C. Genetic diversity analysis of Thai indigenous pig population using microsatellite markers. Asian-Australas J Anim Sci. 2019;32:1491–500.
Article
PubMed
PubMed Central
Google Scholar
Zimmerman SJ, Aldridge CL, Oyler-McCance SJ. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics. 2020;21:382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peripolli E, Munari DP, Silva MVGB, Lima ALF, Irgang R, Baldi F. Runs of homozygosity: current knowledge and applications in livestock. Anim Genet. 2017;48:255–71.
Article
CAS
PubMed
Google Scholar
Ritzoffy N. Prinos k poznavanju Turopoljskog svinjčeta. Contribution to the knowledge of the Turopolje hogs. Vet Arh. 1931;1931:83–134.
Google Scholar
Schiavo G, Bovo S, Muñoz M, Ribani A, Alves E, Araújo JP, et al. Runs of homozygosity provide a genome landscape picture of inbreeding and genetic history of European autochthonous and commercial pig breeds. Anim Genet. 2021;52:155–70.
Article
CAS
PubMed
Google Scholar
Bâlteanu VA, Cardoso TF, Amills M, Egerszegi I, Anton I, Beja-Pereira A, et al. The footprint of recent and strong demographic decline in the genomes of Mangalitza pigs. Animal. 2019;13:2440–6.
Article
PubMed
CAS
Google Scholar
Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet. 2018;19:220–34.
Article
CAS
PubMed
Google Scholar
Gomez-Raya L, Rodríguez C, Barragán C, Silió L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genet Sel Evol. 2015;47:81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK, et al. Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics. 2017;18:69.
Article
PubMed
PubMed Central
Google Scholar
De Roo G. Studies on breeding schemes in a closed pig population. I. Population size and selection intensities. Livest Prod Sci. 1988;19:417–41.
Article
Google Scholar
Barker JSF. A global protocol for determining genetic distances among domestic livestock breeds. In: Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: 7–12 August 1994; Guelph; 1994.
Chen H, Huang M, Yang B, Wu Z, Deng Z, Hou Y, et al. Introgression of Eastern Chinese and Southern Chinese haplotypes contributes to the improvement of fertility and immunity in European modern pigs. GigaScience. 2020;9:giaa014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright S. Isolation by distance under diverse systems of mating. Genetics. 1946;31:39–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Traspov A, Deng W, Kostyunina O, Ji J, Shatokhin K, Lugovoy S, Zinovieva N, et al. Population structure and genome characterization of local pig breeds in Russia, Belorussia, Kazakhstan and Ukraine. Genet Sel Evol. 2016;48:16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu N, Chen L, Wang S, Oh C, Zhao H. Comparison of single-nucleotide polymorphisms and microsatellites in inference of population structure. BMC Genet. 2005;6:S26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Radović Č, Petrović M, Parunović N, Radojković DD, Savić R, Stanišić N, et al. Carcass and pork quality traits of indigenous pure breeds (Mangalitsa, Moravka) and their crossbreads. Indian J Anim Res. 2017;51:371–6.
Google Scholar
Ribani A, Utzeri VJ, Geraci C, Tinarelli S, Djan M, Veličković N, et al. Signatures of de-domestication in autochthonous pig breeds and of domestication in wild boar populations from MC1R and NR6A1 allele distribution. Anim Genet. 2019;50:166–71.
Article
CAS
PubMed
Google Scholar
Pugliese C, Sirtori F. Quality of meat and meat products produced from southern European pig breeds. Meat Sci. 2012;90:511–8.
Article
PubMed
Google Scholar
Nothnagel M, Lu TT, Kayser M, Krawczak M. Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. Hum Mol Genet. 2010;19:2927–35.
Article
CAS
PubMed
Google Scholar
Pemberton TJ, Absher D, Feldman MW, Myers RM, Rosenberg NA, Li JZ. Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet. 2012;91:275–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onteru SK, Fan B, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF. A whole-genome association study for pig reproductive traits. Anim Genet. 2012;43:18–26.
Article
CAS
PubMed
Google Scholar
Lancaster PA, Sharman ED, Horn GW, Krehbiel CR, Starkey JD. Effect of rate of weight gain of steers during the stocker phase. III. Gene expression of adipose tissues and skeletal muscle in growing–finishing beef cattle. J Anim Sci. 2014;92:1462–72.
Article
CAS
PubMed
Google Scholar
Kiener S, Kehl A, Loechel R, Langbein-Detsch I, Müller E, Bannasch D, et al. Novel brown coat color (Cocoa) in French bulldogs results from a nonsense variant in HPS3. Genes (Basel). 2020;11:636.
Article
CAS
Google Scholar
Shibata N, Jishage K, Arita M, Watanabe M, Kawase Y, Nishikawa K, et al. Regulation of hepatic cholesterol synthesis by a novel protein (SPF) that accelerates cholesterol biosynthesis. FASEB J. 2006;20:2642–4.
Article
CAS
PubMed
Google Scholar
Molnár J, Nagy T, Stéger V, Tóth G, Marincs F, Barta E. Genome sequencing and analysis of Mangalica, a fatty local pig of Hungary. BMC Genomics. 2014;15:761.
Article
PubMed
PubMed Central
Google Scholar
Shi L, Wang L, Liu J, Deng T, Yan H, Zhang L, et al. Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population. J Anim Sci Biotechnol. 2020;11:46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howard JT, Jiao S, Tiezzi F, Huang Y, Gray KA, Maltecca C. Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars. BMC Genet. 2015;16:59.
Article
PubMed
PubMed Central
Google Scholar
Le Floc’h N, Seve B. Biological roles of tryptophan and its metabolism: Potential implications for pig feeding. Livest Sci. 2007;112:23–32.
Article
Google Scholar
Ogorevc J, Zorc M, Skrlep M, Bozzi R, Petig M, Fontanesi L, et al. Is KIT locus polymorphism rs328592739 related to white belt phenotype in Krskopolje pig? Agric Conspec Sci. 2017;82:155–61.
Google Scholar
Giuffra E, Evans G, Törnsten A, Wales R, Day A, Looft H, et al. The Belt mutation in pigs is an allele at the Dominant white (I/KIT) locus. Mammal Genome. 1999;10:1132–6.
Article
CAS
Google Scholar
Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–7.
Article
CAS
PubMed
Google Scholar
Hankir MK, Kranz M, Gnad T, Weiner J, Wagner S, Deuther-Conrad W, et al. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Mol Med. 2016;8:796–812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-Montes ÁM, Fernández A, Muñoz M, Noguera JL, Folch JM, Fernández AI. Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed. PLoS One. 2018;13:e0190184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Szmatoła T, Jasielczuk I, Semik-Gurgul E, Szyndler-Nędza M, Blicharski T, Szulc K, et al. Detection of runs of homozygosity in conserved and commercial pig breeds in Poland. J Anim Breed Genet. 2020;137:571–80.
Article
PubMed
CAS
Google Scholar
Bornstein C, Brosh R, Molchadsky A, Madar S, Kogan-Sakin I, Goldstein I, et al. SPATA18, a spermatogenesis-associated gene, is a novel transcriptional target of p53 and p63. Mol Cell Biol. 2011;31:1679–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubin CJ, Megens HJ, Barrio AM, Maqbool K, Sayyab S, Schwochow D, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci USA. 2012;109:19529–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SY, Yasuda S, Tanaka H, Yamagata K, Kim H. Non-clustered protocadherin. Cell Adh Migr. 2011;5:97–105.
Article
PubMed
PubMed Central
Google Scholar
Montague MJ, Li G, Gandolfi B, Khan R, Aken BL, Searle SM, et al. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc Natl Acad Sci USA. 2014;111:17230–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Pipes L, Trut LN, Herbeck Y, Vladimirova AV, Gulevich RG, et al. Genomic responses to selection for tame/aggressive behaviors in the silver fox (Vulpes vulpes). Proc Natl Acad Sci USA. 2018;115:10398–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Zhao P, Zheng X, Zhou L, Wang C, Liu JF. Genome-wide detection of selection signatures in Duroc revealed candidate genes relating to growth and meat quality. G3 (Bethesda). 2020;10:3765–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohm M, Sommerfeld A, Strzoda D, Jones A, Sijmonsma TP, Rudofsky G, et al. Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue. Cell Metab. 2013;17:575–85.
Article
CAS
PubMed
Google Scholar
Suzuki T, Kosaka-Suzuki N, Pack S, Shin DM, Yoon J, Abdullaev Z, et al. Expression of a testis-specific form of Gal3st1 (CST), a gene essential for spermatogenesis, is regulated by the CTCF paralogous gene BORIS. Mol Cell Biol. 2010;30:2473–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Li J, Hou X, Yan H, Zhang L, Liu X, et al. Genome-wide identification of RNA editing sites affecting intramuscular fat in pigs. Animals (Basel). 2020;10:1616.
Article
Google Scholar
Claire D’Andre H, Paul W, Shen X, Jia X, Zhang R, Sun L, et al. Identification and characterization of genes that control fat deposition in chickens. J Anim Sci Biotechnol. 2013;4:43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pusec CM, De Jesus A, Khan MW, Terry AR, Ludvik AE, Xu K, et al. Hepatic HKDC1 expression contributes to liver metabolism. Endocrinology. 2019;160:313–30.
Article
CAS
PubMed
Google Scholar
Fan B, Onteru SK, Mote BE, Serenius T, Stalder KJ, Rothschild MF. Large-scale association study for structural soundness and leg locomotion traits in the pig. Genet Sel Evol. 2009;41:14.
Article
PubMed
PubMed Central
Google Scholar
Moe M, Meuwissen T, Lien S, Bendixen C, Wang X, Conley LN, et al. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone. BMC Genomics. 2007;8:405.
Article
PubMed
PubMed Central
Google Scholar
Bermingham ML, Bishop SC, Woolliams JA, Pong-Wong R, Allen AR, McBride SH, et al. Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity (Edinb). 2014;112:543–51.
Article
CAS
Google Scholar
Lee BY, Lee KN, Lee T, Park JH, Kim SM, Lee HS, et al. Bovine genome-wide association study for genetic elements to resist the infection of foot-and-mouth disease in the field. Asian-Australas J Anim Sci. 2015;28:166–70.
Article
PubMed
PubMed Central
Google Scholar
Crespo-Piazuelo D, Criado-Mesas L, Revilla M, Castelló A, Noguera JL, Fernández AI, et al. Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig. Sci Rep. 2020;10:13962.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu T, Zhu M-J, Schroyen M, Qu L, Nettleton D, Kuhar D, et al. Endometrial gene expression profiling in pregnant Meishan and Yorkshire pigs on day 12 of gestation. BMC Genomics. 2014;15:156.
Article
PubMed
PubMed Central
Google Scholar
Tayade C, Esadeg S, Fang Y, Croy BA. Functions of alpha 2 macroglobulins in pregnancy. Mol Cell Endocrinol. 2005;245:60–6.
Article
CAS
PubMed
Google Scholar