Andersson LS, Juras R, Ramsey DT, Eason-Butler J, Ewart S, Cothran G, Lindgren G: Equine Multiple Congenital Ocular Anomalies maps to a 4.9 megabase interval on horse chromosome 6. BMC Genet. 2008, 9: 88.

Article
PubMed Central
PubMed
Google Scholar

Brooks SA, Gabreski N, Miller D, Brisbin A, Brown HE, Streeter C, Mezey J, Cook D, Antczak DF: Whole-genome SNP association in the horse: Identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet. 2010, 6: e1000909.

Article
PubMed Central
PubMed
Google Scholar

Fox-Clipsham LY, Carter SD, Goodhead I, Hall N, Knottenbelt DC, May PDF, Ollier WE, Swinburne JE: Identification of a mutation associated with fatal Foal Immunodeficiency Syndrome in the Fell and Dales pony. PLoS Genet. 2011, 7: e1002133.

Article
PubMed Central
CAS
PubMed
Google Scholar

Teyssedre S, Dupuis MC, Guerin G, Schibler L, Denoix JM, Elsen JM, Ricard A: Genome-wide association studies for osteochondrosis in French Trotter horses. J Anim Sci. 2012, 90: 45-53.

Article
CAS
PubMed
Google Scholar

Lykkjen S, Dolvik NI, McCue ME, Rendahl AK, Mickelson JR, Roed KH: Genome-wide association analysis of osteochondrosis of the tibiotarsal joint in Norwegian Standardbred trotters. Anim Genet. 2010, 41 (Suppl 2): 111-120.

Article
PubMed
Google Scholar

Howie BN, Donnelly P, Marchini J: A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009, 5: e1000529.

Article
PubMed Central
PubMed
Google Scholar

Hayes BJ, Bowman PJ, Daetwyler HD, Kijas JW, van der Werf JHJ: Accuracy of genotype imputation in sheep breeds. Anim Genet. 2012, 43: 72-80.

Article
CAS
PubMed
Google Scholar

Hickey JM, Crossa J, Babu R, de los Campos G: Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Sci. 2012, 52: 654-663.

Article
Google Scholar

Vereijken ALJ, Albers GAA, Visscher J: Proceedings of the 9^{th} World Congress on Genetics Applied to Livestock Production: 1–6 August 2010. Imputation of SNP genotypes in chicken using a reference panel with phased haplotypes. 2010, Leipzig,http://www.kongressband.de/wcgalp2010/assets/pdf/0365,

Google Scholar

Weigel KA, de los Campos G, Vazquez AI, Rosa GJM, Gianola D, Van Tassell CP: Accuracy of direct genomic values derived from imputed single nucleotide polymorphism genotypes in Jersey cattle. J Dairy Sci. 2010, 93: 5423-5435.

Article
CAS
PubMed
Google Scholar

Scheet P, Stephens M: A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006, 78: 629-644.

Article
PubMed Central
CAS
PubMed
Google Scholar

Li Y, Abecasis GR: Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet. 2006, 79: S2290.

Google Scholar

Marchini J, Howie B, Myers S, McVean G, Donnelly P: A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007, 39: 906-913.

Article
CAS
PubMed
Google Scholar

Hickey JM, Kinghorn BP, Tier B, Wilson JF, Dunstan N, van der Werf JH: A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes. Genet Sel Evol. 2011, 43: 12.

Article
PubMed Central
PubMed
Google Scholar

Browning SR, Browning BL: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007, 81: 1084-1097.

Article
PubMed Central
CAS
PubMed
Google Scholar

Pei Y-F, Li J, Zhang L, Papasian CJ, Deng H-W: Analyses and comparison of accuracy of different genotype imputation methods. PLoS ONE. 2008, 3: e3551.

Article
PubMed Central
PubMed
Google Scholar

Nothnagel M, Ellinghaus D, Schreiber S, Krawczak M, Franke A: A comprehensive evaluation of SNP genotype imputation. Hum Genet. 2009, 125: 163-171.

Article
CAS
PubMed
Google Scholar

Weigel KA, Van Tassell CP, O'Connell JR, VanRaden PM, Wiggans GR: Prediction of unobserved single nucleotide polymorphism genotypes of Jersey cattle using reference panels and population-based imputation algorithms. J Dairy Sci. 2010, 93: 2229-2238.

Article
CAS
PubMed
Google Scholar

de Bakker PIW, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D: Efficiency and power in genetic association studies. Nat Genet. 2005, 37: 1217-1223.

Article
CAS
PubMed
Google Scholar

Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA: Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004, 74: 106-120.

Article
PubMed Central
CAS
PubMed
Google Scholar

Zhang K, Qin Z, Chen T, Liu JS, Waterman MS, Sun F: HapBlock: haplotype block partitioning and tag SNP selection software using a set of dynamic programming algorithms. Bioinformatics. 2005, 21: 131-134.

Article
CAS
PubMed
Google Scholar

Halldórsson BV, Bafna V, Lippert R, Schwartz R, De La Vega FM, Clark AG, Istrail S: Optimal haplotype block-free selection of tagging SNPs for genome-wide association studies. Genome Res. 2004, 14: 1633-1640.

Article
PubMed Central
PubMed
Google Scholar

He J, Zelikovsky A: MLR-tagging: informative SNP selection for unphased genotypes based on multiple linear regression. Bioinformatics. 2006, 22: 2558-2561.

Article
CAS
PubMed
Google Scholar

Halldórsson BV, Istrail S, De La Vega FM: Optimal selection of SNP markers for disease association studies. Hum Hered. 2004, 58: 190-202.

Article
PubMed
Google Scholar

Corbin LJ, Blott SC, Swinburne JE, Sibbons C, Fox-Clipsham LY, Helwegen M, Parkin TD, Newton JR, Bramlage L, McIlwraith CW, Bishop SC, Woolliams JA, Vaudin M: A genome-wide association study of osteochondritis dissecans in the Thoroughbred. Mamm Genome. 2012, 23: 294-303.

Article
PubMed
Google Scholar

McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E, Binns MM, Distl O, Guérin G, Hasegawa T, Hill EW, Leeb T, Lindgren G, Penedo MC, Røed KH, Ryder OA, Swinburne JE, Tozaki T, Valberg SJ, Vaudin M, Lindblad-Toh K, Wade CM, Mickelson JR: A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genet. 2012, 8: e1002451.

Article
PubMed Central
CAS
PubMed
Google Scholar

Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blöcker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guérin G: Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 2009, 326: 865-867.

Article
PubMed Central
CAS
PubMed
Google Scholar

Swinburne JE, Boursnell M, Hill G, Pettitt L, Allen T, Chowdhary B, Hasegawa T, Kurosawa M, Leeb T, Mashima S, Mickelson JR, Raudsepp T, Tozaki T, Binns M: Single linkage group per chromosome genetic linkage map for the horse, based on two three-generation, full-sibling, crossbred horse reference families. Genomics. 2006, 87: 1-29.

Article
CAS
PubMed
Google Scholar

Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE: Genomic selection using different marker types and densities. J Anim Sci. 2008, 86: 2447-2454.

Article
CAS
PubMed
Google Scholar

Maniatis N, Collins A, Xu C-F, McCarthy LC, Hewett DR, Tapper W, Ennis S, Ke X, Morton NE: The first linkage disequilibrium (LD) maps: Delineation of hot and cold blocks by diplotype analysis. Proc Natl Acad Sci. 2002, 99: 2228-2233.

Article
PubMed Central
CAS
PubMed
Google Scholar

Malecot G: Les Mathématiques de l’Hérédité. 1948, Paris: Maison et Cie

Google Scholar

Morton NE, Zhang W, Taillon-Miller P, Ennis S, Kwok PY, Collins A: The optimal measure of allelic association. Proc Natl Acad Sci. 2001, 98: 5217-5221.

Article
PubMed Central
CAS
PubMed
Google Scholar

Khatkar MS, Collins A, Cavanagh JAL, Hawken RJ, Hobbs M, Zenger KR, Barris W, McClintock AE, Thomson PC, Nicholas FW, Raadsma HW: A first-generation metric linkage disequilibrium map of bovine chromosome 6. Genetics. 2006, 174: 79-85.

Article
PubMed Central
CAS
PubMed
Google Scholar

Zhang W, Collins A, Maniatis N, Tapper W, Morton NE: Properties of linkage disequilibrium (LD) maps. Proc Natl Acad Sci. 2002, 99: 17004-17007.

Article
PubMed Central
CAS
PubMed
Google Scholar

Browning BL, Browning SR: A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009, 84: 210-223.

Article
PubMed Central
CAS
PubMed
Google Scholar

Purcell S: PLINK. v 1.06. 2009

Google Scholar

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC: PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007, 81: 559-575.

Article
PubMed Central
CAS
PubMed
Google Scholar

Weir BS: Genetic Data Analysis II: Methods for Discrete Population Genetic Data. 1996, Sunderland MA: Sinauer Associates, 126.

Google Scholar

Browning SR: Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet. 2008, 124: 439-450.

Article
PubMed Central
CAS
PubMed
Google Scholar

Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Gietzen K, Paiva S, Barendse W, Ciani E, and other members of the International Sheep Genomics Consortium: Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10: e1001258.

Article
PubMed Central
CAS
PubMed
Google Scholar

Dalrymple B, Kirkness E, Nefedov M, McWilliam S, Ratnakumar A, Barris W, Zhao S, Shetty J, Maddox J, O'Grady M, Nicholas F, Crawford AM, Smith T, de Jong PJ, McEwan J, Oddy VH, Cockett NE, International Sheep Genomics Consortium: Using comparative genomics to reorder the human genome sequence into a virtual sheep genome. Genome Biol. 2007, 8: R152.

Article
PubMed Central
PubMed
Google Scholar

Corbin LJ, Blott SC, Swinburne JE, Vaudin M, Bishop SC, Woolliams JA: Linkage disequilibrium and historical effective population size in the Thoroughbred horse. Anim Genet. 2010, 41: S8-S15.

Article
Google Scholar

Cunningham EP, Dooley JJ, Splan RK, Bradley DG: Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim Genet. 2001, 32: 360-364.

Article
CAS
PubMed
Google Scholar

Daetwyler HD, Wiggans GR, Hayes BJ, Woolliams JA, Goddard ME: Imputation of missing genotypes from sparse to high density using long-range phasing. Genetics. 2011, 189: 317-327.

Article
PubMed Central
CAS
PubMed
Google Scholar

R Development Core Team: R: A Language and Environment for Computing. 2009, Vienna, Austria: R Foundation for Statistical Computing, ISBN 3-900051-07-0 http://www.r-project.org

Google Scholar

Becker RA, Chambers JM, Wilks AR: The New S Language. 1988, Wadsworth & Brooks/Cole: Pacific Grove

Google Scholar

Cleveland WS: Robust locally weighted regression and smoothing scatterplots. J Am Statist Assoc. 1979, 74: 829-836.

Article
Google Scholar

Cleveland WS: Lowess - A program for smoothing scatterplots by robust locally weighted regression. Am Stat. 1981, 35: 54.

Article
Google Scholar